8 research outputs found

    Protrahiertes Aufwachen aus der Narkose und akutes postoperatives Lungenversagen nach Pneumonektomie

    No full text

    The Rossendorf beamline at the ESRF (project ROBL). Pt. 1 Beamline design

    No full text
    In this final design report the general layout and the optics of the beamline ROBL is described. The beamline is build by the research center Rossendorf at the bending magnet source BM20 of the European synchrotron radiation facility (ESRF), Grenoble. The design criteria for the beamline optics and the adopted solutions are reported in detail. Some performance data of the beamline as resolution, focussing and intensity are modelled by the ray-tracing code SHADOW. Furthermore the layout of the vacuum system is described. (orig.)Available from FIZ Karlsruhe / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Optimization aspects of the new nELBE photo-neutron source

    No full text
    The nELBE beamline at Forschungszentrum Dresden-Rossendorf (FZD) provides intense neutron beams by stopping primary electrons in a liquid lead target, where neutrons are produced by bremsstrahlung photons via (γ,n) reactions. With the aim to increase the neutron yield through the enhancement of the electron beam energy (from the current 40 MeV limit up to 50 MeV), as well as to minimize several sources of background that are presently affecting the measurements, a new neutron beam-line and a new, larger neutron experimental room have been designed. The optimization of the neutron/photon ratio, the minimization of the backscattered radiation from the walls and the possibility to have better experimental conditions are the main advantages of the new design. To optimize the beamline, extensive simulations with the particle interaction and transport code FLUKA have been performed. Starting from the primary electron beam, both the photon and neutron radiation fields have been fully characterized. To have a cross-check of the results, the calculated values of the neutron yields at different energies of the primary beam have been compared both with an independent simulation with the MCNP code and with analytical calculations, obtaining a very satisfactory agreement at the level of few percent. The evaluated radiation fields have been used to optimize the direction of the new neutron beamline, in order to minimize the photon flash contribution. A general overview of the new photo-neutron source, together with all the steps of the optimization study, is here presented and discussed

    Optimization aspects of the new nELBE photo-neutron source

    No full text
    The nELBE beamline at Forschungszentrum Dresden-Rossendorf (FZD) provides intense neutron beams by stopping primary electrons in a liquid lead target, where neutrons are produced by bremsstrahlung photons via (γ,n) reactions. With the aim to increase the neutron yield through the enhancement of the electron beam energy (from the current 40 MeV limit up to 50 MeV), as well as to minimize several sources of background that are presently affecting the measurements, a new neutron beam-line and a new, larger neutron experimental room have been designed. The optimization of the neutron/photon ratio, the minimization of the backscattered radiation from the walls and the possibility to have better experimental conditions are the main advantages of the new design. To optimize the beamline, extensive simulations with the particle interaction and transport code FLUKA have been performed. Starting from the primary electron beam, both the photon and neutron radiation fields have been fully characterized. To have a cross-check of the results, the calculated values of the neutron yields at different energies of the primary beam have been compared both with an independent simulation with the MCNP code and with analytical calculations, obtaining a very satisfactory agreement at the level of few percent. The evaluated radiation fields have been used to optimize the direction of the new neutron beamline, in order to minimize the photon flash contribution. A general overview of the new photo-neutron source, together with all the steps of the optimization study, is here presented and discussed

    ROBL - a CRG beamline for radiochemistry and materials research at the ESRF

    Get PDF
    Der Bericht beschreibt die Rossendorfer Beamline (ROBL), die vom Forschungszentrum Rossendorf an der ESRF errichtet wurde. ROBL besteht aus zwei unabhaengigen Messplaetzen: einem kleinen radiochemischen Labor fuer Roentgen-Adsorptionsspektroskopie an offenen radioaktiven Proben und einem Vielzweckmessplatz fuer Materialuntersuchungen insbesondere mit Roentgendiffraktion und Reflektometrie. Der Radiochemie-Messplatz ist eine weltweit unikale Einrichtung an einer modernen Synchrontronstrahlungsquelle. (orig.)The paper describes the Rossendorf Beamline (ROBL) built by the Forschungszentrum Rossendorf at th ESRF. ROBL comprises two different and independently operating experimental stations: a radiochemistry laboratory for X-ray absorption spectroscopy of non-sealed radioactive samples and a general purpose materials research station for X-ray diffraction and reflectometry mainly of thin films and interfaces modified by ion beam techniques. The radiochemistry set-up is worldwide a unique installation at a modern synchrotron radiation source. (orig.)Available from TIB Hannover: RR 1847(256) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore