187 research outputs found

    Ueber 2.7-Dioxynaphtalin

    Get PDF
    n/

    Comment on the calculation of forces for multibody interatomic potentials

    Full text link
    The system of particles interacting via multibody interatomic potential of general form is considered. Possible variants of partition of the total force acting on a single particle into pair contributions are discussed. Two definitions for the force acting between a pair of particles are compared. The forces coincide only if the particles interact via pair or embedded-atom potentials. However in literature both definitions are used in order to determine Cauchy stress tensor. A simplest example of the linear pure shear of perfect square lattice is analyzed. It is shown that, Hardy's definition for the stress tensor gives different results depending on the radius of localization function. The differences strongly depend on the way of the force definition.Comment: 9 pages, 2 figure

    Virial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices

    Full text link
    We derive the proper form of Virial theorem for a system of rotating self-gravitating Brownian particles. We show that, in the two-dimensional case, it takes a very simple form that can be used to obtain general results about the dynamics of the system without being required to solve the Smoluchowski-Poisson system explicitly. We also develop the analogy between self-gravitating systems and two-dimensional point vortices and derive a Virial-like relation for the vortex system

    Holevo's bound from a general quantum fluctuation theorem

    Full text link
    We give a novel derivation of Holevo's bound using an important result from nonequilibrium statistical physics, the fluctuation theorem. To do so we develop a general formalism of quantum fluctuation theorems for two-time measurements, which explicitly accounts for the back action of quantum measurements as well as possibly non-unitary time evolution. For a specific choice of observables this fluctuation theorem yields a measurement-dependent correction to the Holevo bound, leading to a tighter inequality. We conclude by analyzing equality conditions for the improved bound.Comment: 5 page

    Nanoscale Smoothing and the Analysis of Interfacial Charge and Dipolar Densities

    Get PDF
    The interface properties of interest in multilayers include interfacial charge densities, dipole densities, band offsets, and screening-lengths, among others. Most such properties are inaccesible to direct measurements, but are key to understanding the physics of the multilayers. They are contained within first-principles electronic structure computations but are buried within the vast amount of quantitative information those computations generate. Thus far, they have been extracted from the numerical data by heuristic nanosmoothing procedures which do not necessarily provide results independent of the smoothing process. In the present paper we develop the theory of nanosmoothing, establishing procedures for both unpolarized and polarized systems which yield interfacial charge and dipole densities and band offsets invariant to the details of the smoothing procedures when the criteria we have established are met. We show also that dipolar charge densities, i. e. the densities of charge transferred across the interface, and screening lengths are not invariant. We illustrate our procedure with a toy model in which real, transversely averaged charge densities are replaced by sums of Gaussians.Comment: 30 pages, 15 figures, 4 table

    Correction to the Clausius-Mosotti equation: the dielectric constant of nonpolar fluids from Monte Carlo simulations

    Get PDF
    We examine the dielectric constant of nonpolar fluids by direct Monte Carlo simulations on the basis of the polarizable hard sphere (PHS) model, where the spheres carry molecular polarizabilities. Point dipoles are induced in the spheres partly by an external electric field and partly by other molecules. It has been known that the Clausius–Mosotti equation needs a correction due to mutual polarization between molecules. We reproduce the qualitative behavior found in experiments: the correction increases with increasing density, reaches a maximum, and decreases at high densities. We show that the classic theory of Kirkwood and Yvon is quantitatively correct for the PHS model. © 2009 American Institute of Physic

    The Boltzmann Entropy for Dense Fluids Not in Local Equilibrium

    Full text link
    We investigate, via computer simulations, the time evolution of the (Boltzmann) entropy of a dense fluid not in local equilibrium. The macrovariables MM describing the system are the (empirical) particle density f=\{f(\un{x},\un{v})\} and the total energy EE. We find that S(ft,E)S(f_t,E) is monotone increasing in time even when its kinetic part is decreasing. We argue that for isolated Hamiltonian systems monotonicity of S(Mt)=S(MXt)S(M_t) = S(M_{X_t}) should hold generally for ``typical'' (the overwhelming majority of) initial microstates (phase-points) X0X_0 belonging to the initial macrostate M0M_0, satisfying MX0=M0M_{X_0} = M_0. This is a direct consequence of Liouville's theorem when MtM_t evolves autonomously.Comment: 8 pages, 5 figures. Submitted to PR

    Criticality in strongly correlated fluids

    Full text link
    In this brief review I will discuss criticality in strongly correlated fluids. Unlike simple fluids, molecules of which interact through short ranged isotropic potential, particles of strongly correlated fluids usually interact through long ranged forces of Coulomb or dipolar form. While for simple fluids mechanism of phase separation into liquid and gas was elucidated by van der Waals more than a century ago, the universality class of strongly correlated fluids, or in some cases even existence of liquid-gas phase separation remains uncertain.Comment: Proceedings of Scaling Concepts and Complex Systems, Merida, Mexic

    Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit

    Full text link
    We revisit the relationship between the Nernst theorem and the Kelvin-Planck statement of the second law. We propose that the exchange of entropy uniformly vanishes as the temperature goes to zero. The analysis of this assumption shows that is equivalent to the fact that the compensation of a Carnot engine scales with the absorbed heat so that the Nernst theorem should be embedded in the statement of the second law. ----- Se analiza la relaci{\'o}n entre el teorema de Nernst y el enunciado de Kelvin-Planck del segundo principio de la termodin{\'a}mica. Se{\~n}alamos el hecho de que el cambio de entrop{\'\i}a tiende uniformemente a cero cuando la temperatura tiende a cero. El an{\'a}lisis de esta hip{\'o}tesis muestra que es equivalente al hecho de que la compensaci{\'o}n de una m{\'a}quina de Carnot escala con el calor absorbido del foco caliente, de forma que el teorema de Nernst puede derivarse del enunciado del segundo principio.Comment: 8pp, 4 ff. Original in english. Also available translation into spanish. Twocolumn format. RevTe
    • …
    corecore