11 research outputs found

    Coeval Eocene blooms of the freshwater fern Azolla in and around Arctic and Nordic seas

    No full text
    For a short time interval (c. 1.2 Myr) during the early middle Eocene (~ 49 Myr), the central Arctic Ocean was episodically densely covered by the freshwater fern Azolla, implying sustained freshening of surface waters. Coeval Azolla fossils in neighboring Nordic seas were thought to have been sourced from the Arctic. The recognition of a different Azolla species in the North Sea raised doubts about this hypothesis. Here we show that no less than five Azolla species had coeval blooms and spread in the Arctic and NW European regions. A likely trigger for these unexpected Azolla blooms is high precipitation prevailing by the end of the warmest climates of the Early Eocene Climatic Optimum (EECO)

    IgE recognition patterns in peanut allergy are age dependent: Perspectives of the EuroPrevall study

    No full text
    Background We tested the hypothesis that specific molecular sensitization patterns correlate with the clinical data/manifestation in a European peanut-allergic population characterized under a common protocol. Methods Sixty-eight peanut-allergic subjects and 82 tolerant controls from 11 European countries were included. Allergy to peanut and lowest symptom-eliciting dose was established by double-blind placebo-controlled food challenge in all but anaphylactic subjects. Information of early or late (before or after 14 years of age) onset of peanut allergy was obtained from standardized questionnaires. IgE to peanut allergens rAra h 1-3, 6, 8-9, profilin and CCD was determined using ImmunoCAP. Results Seventy-eight percent of peanut allergics were sensitized to peanut extract and 90% to at least one peanut component. rAra h 2 was the sole major allergen for the peanut-allergic population. Geographical differences were observed for rAra h 8 and rAra h 9, which were major allergens for central/western and southern Europeans, respectively. Sensitization to rAra h 1 and 2 was exclusively observed in early-onset peanut allergy. Peanut-tolerant subjects were frequently sensitized to rAra h 8 or 9 but not to storage proteins. Sensitization to Ara h 2 ≥ 1.0 kUA/l conferred a 97% probability for a systemic reaction (P = 0.0002). Logistic regression revealed a significant influence of peanut extract sensitization and region on the occurrence of systemic reactions (P = 0.0185 and P = 0.0436, respectively). Conclusion Sensitization to Ara h 1, 2 and 3 is usually acquired in childhood. IgE to Ara h 2 ≥ 1.0 kUA/l is significantly associated with the development of systemic reactions to peanut. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

    Overview of Solar Wind–Magnetosphere–Ionosphere–Atmosphere Coupling and the Generation of Magnetospheric Currents

    Get PDF
    We review the morphology and dynamics of the electrical current systems of the terrestrial magnetosphere and ionosphere. Observations from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) over the three years 2010 to 2012 are employed to illustrate the variability of the field-aligned currents that couple the magnetosphere and ionosphere, on timescales from minutes to years, in response to the impact of solar wind disturbances on the magnetosphere and changes in the level of solar illumination of the polar ionospheres. The variability is discussed within the context of the occurrence of magnetic reconnection between the solar wind and terrestrial magnetic fields at the magnetopause, the transport of magnetic flux within the magnetosphere, and the onset of magnetic reconnection in the magnetotail. The conditions under which the currents are expected to be weak, and hence minimally contaminate measurements of the internally-produced magnetic field of the Earth, are briefly outlined
    corecore