12 research outputs found

    A new era for science-industry research collaboration – a view towards the future

    Get PDF
    Direct engagement of the fishing industry in the provision and co-creation of knowledge and data for research and management is increasingly prevalent. In both the North Atlantic and North Pacific, enhanced and targeted engagement is evident. More is needed. Science-Industry collaborative approaches to developing questions, collecting data, interpreting data, and sharing knowledge create opportunities for information transfer and improved understanding of ecosystem interactions, stock dynamics, economic incentives, and response to management. These collaborations require clear communication and awareness of objectives and outcomes. These initiatives also require careful attention to conditions and interactions that foster respect, trust, and communication. Respect is critical and entails acknowledging the respective skills and expertise of both scientists and fishers. Trust is needed to build confidence in the information developed and its use. Communication is essential to maintain relationships and leverage shared insights. To assess current trends and future opportunities related to this type of engagement, we convened a networking session of research scientists, industry scientists, industry leaders, and fishers at the Annual Science Meeting of the International Council for the Exploration of the Sea (ICES) to address the following questions: (1) What are scientific needs that could be addressed with industry-collected data or knowledge? And (2) How can science-industry collaboration be made sustainable? Here we identify opportunities and acknowledge challenges, outline necessary conditions for respectful and sustainable collaborative research, and highlight ways to promote stakeholder involvement in developing science. We address industry concerns and solicit industry advice. We also address challenges to scientists in ensuring standards for scientific data, conflict of interest, and applying information to advise management. The discussions in this session and subsequent correspondence have led to a set of guidelines and best practices that provide a framework to advance further collaboration between industry and research science. We identify opportunities for directed engagement. We also detail potential approaches to clarify expectations and develop avenues for iterative communication and engagement to sustain collaborative efforts over time. The intent is to improve and expand data streams and contextual understanding of ecosystem processes, stock assessment, and socio-economic dynamics to the benefits of science and industry alike

    Mechanisms and models for industry engagement in collaborative research in commercial fisheries

    Get PDF
    Data and insights from fishers are essential sources of information to advance understanding of fishery and ecosystem dynamics. Incorporating fisher and industry knowledge holds prospects for improving marine science and fisheries management. We address cooperative research in the context of collaboration between fishers, scientists, industries, universities, and agencies to develop applied research to understand marine ecosystems, inform fishery management, enhance sustainability, govern resource use, and investigate social-economic dynamics. We leverage the insights of more than 100 research scientists, fisheries managers, industry representatives, and fishers to outline actionable recommendations for effective approaches and mechanisms to integrate industry data, perspectives, and insights in fisheries science. We also highlight opportunities and address challenges and limitations to such collaboration

    A netting-based alternative to rigid sorting grids in the small-meshed Norway pout (Trisopterus esmarkii) trawl fishery

    Get PDF
    A new bycatch reduction device, termed “Excluder”, is presented as an alternative to a traditional rigid sorting grid, mandatory in the small-meshed Norway Pout (Trisopterus esmarkii) trawl fishery in the North Sea. The fishery is a high-volume fishery with large vessels, large demersal trawls and catches up to 100 tons per haul of this small forage fish. The Excluder is a 30 m long netting-based sorting system, developed to reduce bycatch (70 mm square meshes) and improving on board gear-handling and safety. The Excluder was tested against a 5.8 m2 standard sorting grid (35 mm bar spacing) in a twin-trawl experiment from the commercial 70 m trawler “S364 Rockall”. Catch data were analysed by species and length using the catch comparison method. For all bycatch species analysed, the Excluder had significantly lower catches relative to the grid: herring (21%), whiting (6%), mackerel (5%), American plaice (70%), witch flounder (15%), and lesser silver smelt (71%). For Norway Pout there was a significant increase in the overall catch efficiency of 32%. These results are explained by a 10 cm smaller L50 (the length of fish with 50% probability of being rejected by the sorting system) of the Excluder and a 15 times larger sorting area, which reduces the risk of clogging and loss of function. With these documented effects of improved sorting and target species catch efficiency, implementation of the Excluder would improve sustainability and address two main barriers of the current Norway pout fishery that limit quota capitalization; a tendency for Norway pout to mix with herring and whiting and lowered catch rates from grid-clogging. Additionally, gear-handling and safety on board would be improved

    A netting-based alternative to rigid sorting grids in the small-meshed Norway pout (Trisopterus esmarkii) trawl fishery.

    Get PDF
    A new bycatch reduction device, termed "Excluder", is presented as an alternative to a traditional rigid sorting grid, mandatory in the small-meshed Norway Pout (Trisopterus esmarkii) trawl fishery in the North Sea. The fishery is a high-volume fishery with large vessels, large demersal trawls and catches up to 100 tons per haul of this small forage fish. The Excluder is a 30 m long netting-based sorting system, developed to reduce bycatch (70 mm square meshes) and improving on board gear-handling and safety. The Excluder was tested against a 5.8 m2 standard sorting grid (35 mm bar spacing) in a twin-trawl experiment from the commercial 70 m trawler "S364 Rockall". Catch data were analysed by species and length using the catch comparison method. For all bycatch species analysed, the Excluder had significantly lower catches relative to the grid: herring (21%), whiting (6%), mackerel (5%), American plaice (70%), witch flounder (15%), and lesser silver smelt (71%). For Norway Pout there was a significant increase in the overall catch efficiency of 32%. These results are explained by a 10 cm smaller L50 (the length of fish with 50% probability of being rejected by the sorting system) of the Excluder and a 15 times larger sorting area, which reduces the risk of clogging and loss of function. With these documented effects of improved sorting and target species catch efficiency, implementation of the Excluder would improve sustainability and address two main barriers of the current Norway pout fishery that limit quota capitalization; a tendency for Norway pout to mix with herring and whiting and lowered catch rates from grid-clogging. Additionally, gear-handling and safety on board would be improved

    Potential for Mesopelagic Fishery Compared to Economy and Fisheries Dynamics in Current Large Scale Danish Pelagic Fishery

    Get PDF
    Mesopelagic fish species represent a large potentially unexploited resource for the fishing industry and the fish meal, oil, nutraceutical, and pharmaceutical production. However, thorough investigation on ecological sustainability and socio-economic viability are fundamental prerequisites for potential exploitation. The current study explores the economic viability of a potential mesopelagic fishery investigating minimum catch rates, under the assumption of previous assessments of biological sustainability of such exploitation. We analyzed fishery data from the North-East Atlantic fisheries of the Danish large pelagic fleet from 2015 to 2019, by comparing the combined data on fishing dynamics and cost-structures with data from interviews of key pelagic producer organization representatives to develop scenarios of profitability. The results show full year-round fleet occupation with the ongoing fisheries, exposing the need of switching from existing activities, or investing into new vessels for conducting potential mesopelagic fishery. Economic analyses revealed that the minimum revenue to break even (zero profit) by trip varies among métiers between 60,000 and 200,000 euro showing strong positive correlation with vessel sizes. High profitability was discovered for herring, Atlantic mackerel and blue whiting fisheries while low profitability was observed for the Norway pout fishery. Due to the lack of mesopelagic fishery data, different scenarios of profitability were investigated as informed by the pelagic catch sector stakeholder perceptions of prices and costs and compared to current economic dynamics. A high break-even revenue per trip was forecasted given the increased perceived costs for fuel, modifications of gears and on-board processing methods and potential new vessel investments. High profitability may be reached if the catches exceed 220–1,060 tons per trip depending on costs and vessel storage capacity. If the conservation methods are improved from current refrigerated sea water, fishing trips could last longer than 5 days, being the major limiting economic factor for potential mesopelagic fishery. Future investigations on realistic mesopelagic catches, trip durations and spatio-temporal distribution of fisheries in relation to location, resource abundance, fishing rights, storage and conservation methods will be essential to test the robustness of the scenarios proposed in this study, and will in turn benefit of the economic requirements evaluated herein

    A new era for science-industry research collaboration – a view towards the future

    No full text
    Direct engagement of the fishing industry in the provision and co-creation of knowledge and data for research and management is increasingly prevalent. In both the North Atlantic and North Pacific, enhanced and targeted engagement is evident. More is needed. Science-Industry collaborative approaches to developing questions, collecting data, interpreting data, and sharing knowledge create opportunities for information transfer and improved understanding of ecosystem interactions, stock dynamics, economic incentives, and response to management. These collaborations require clear communication and awareness of objectives and outcomes. These initiatives also require careful attention to conditions and interactions that foster respect, trust, and communication. Respect is critical and entails acknowledging the respective skills and expertise of both scientists and fishers. Trust is needed to build confidence in the information developed and its use. Communication is essential to maintain relationships and leverage shared insights. To assess current trends and future opportunities related to this type of engagement, we convened a networking session of research scientists, industry scientists, industry leaders, and fishers at the Annual Science Meeting of the International Council for the Exploration of the Sea (ICES) to address the following questions: (1) What are scientific needs that could be addressed with industry-collected data or knowledge? And (2) How can science-industry collaboration be made sustainable? Here we identify opportunities and acknowledge challenges, outline necessary conditions for respectful and sustainable collaborative research, and highlight ways to promote stakeholder involvement in developing science. We address industry concerns and solicit industry advice. We also address challenges to scientists in ensuring standards for scientific data, conflict of interest, and applying information to advise management. The discussions in this session and subsequent correspondence have led to a set of guidelines and best practices that provide a framework to advance further collaboration between industry and research science. We identify opportunities for directed engagement. We also detail potential approaches to clarify expectations and develop avenues for iterative communication and engagement to sustain collaborative efforts over time. The intent is to improve and expand data streams and contextual understanding of ecosystem processes, stock assessment, and socio-economic dynamics to the benefits of science and industry alike

    PIT-mærkning afslører tobisens rumlige livshistorie-parametre

    No full text
    For at forbedre forvaltningsmulighederne for fiskeri i Nordsøen efter havtobis (Ammodytes marinus), blev der udviklet et stor-skala mærknings- og genfangstforsøg, hvor tobis blev mærket med Passive Integrated Transponders (PIT-mærker) for at få højopløselig rumlig og tidsmæssig information om tobisens livshistorieparametre. Under fire år, der dækkede både vinter-nedgravningen og forårs-fiskeri- sæsonen, blev over 25.000 tobis mærket og sluppet ud på deres sandbanke-habitater i forskellige områder af Nordsøen. Genfangster blev identificeret ved hjælp af scannere monteret på fabrikspumpestationer, der modtager fangster fra industrifiskeriet. Scanner-effektiviteten blev estimeret til >98%, og flertallet af alle danske tobislandinger blev scannet. Fangstrejser med genfangster blev rekonstrueret, og den mest sandsynlige fangstlokalitet blev estimeret ved at kombinere logbogsdata og fiskeriindsats. Genfangster fra tre fiskesæsoner (i alt 61, 141 og 509) viste overensstemmelse med den lokale fiskeri-udvikling under sæsonen med høj stationær adfærd for tobis. Data muliggør estimering af migration, lokal forekomst samt relativ fiskeri- og naturlig dødelighed
    corecore