9 research outputs found

    STRESS ECOLOGY OF THE PACIFIC RATTLESNAKES (CROTALUS OREGANUS AND CROTALUS HELLERI)

    Get PDF
    Stress is a physiological state induced by disturbance or adverse environmental conditions and is modulated by the glucocorticoid hormone corticosterone (CORT) in reptiles. Stressors can have various impacts on vertebrate trait expression and may affect survival or reproduction. Little is known about the effects of chronically elevated CORT in free-ranging reptiles, or the effect of disturbance stress on venom composition in captive snakes. In chapter 1, we investigated the effects of researcher induced disturbance on CORT levels and venom composition in a group of captive Northern Pacific rattlesnakes (Crotalus oreganus). Venom protein concentration and plasma CORT levels were compared before and after two weeks of unpredictable bouts of cage vibration, and to a non-vibrated control group. CORT levels were also assessed one week into vibration treatment. We found no effect of vibration treatment on CORT levels or on venom composition, and within-snake relative protein abundance was highly repeatable, although some variation was observed. We found a strong correlation between changes in relative abundance of several proteins and CORT. These results led us to believe that while differential forms of researcher-induced disturbance may not affect venom composition, significant changes in baseline CORT, or chronic stress, may affect the venom phenotype. In the next study, we investigated the effects of chronically elevated CORT in a wild population of radio-telemetered Southern Pacific rattlesnakes (C. helleri). Snakes were implanted intra-coelomically with either crystalline CORT or sham implants. Prior to implant and for two week periods thereafter, we sampled blood, venom, defensive behavior, and body temperature (Tb). Thermal data logger implants recorded snake Tb each hour. Snakes were tracked daily for one month, and detectability, defensive behavior, movement, home range size and thermal parameters were calculated for each group during the periods between samples. Stress reactivity was assessed as change in CORT from baseline after one hour of acute confinement stress. CORT implants led to elevated baseline CORT for at least two weeks in treatment snakes, showing that our treatment was successful. Chapter 2 describes the effects of CORT treatment on venom parameters. Increased baseline CORT was associated with increased activity of venom protein phospholipase A2, indicating that CORT may have direct effects on regulating venom protein activity. Overall, venom activity was repeatable within individual snakes. Chapter 3 describes the effect of CORT on behavioral, ecological, and physiological variables. Implant treatment led to decreased average Tb in weeks two and three. We detected a trend for lower baseline CORT to predict a greater magnitude of acute stress response. Snakes with higher testosterone levels exhibited higher defensive behavior scores. Overall, there were no other effects of implant treatment. Our results suggest that rattlesnake thermoregulation is impacted by chronic stress, which could affect other aspects of their metabolism and ecology. Results of both studies suggest baseline CORT may direct both the activity and relative abundance of venom proteins in different manners, a hypothesis which deserves further investigation using proteomic tools. When responding to an acute stressor, rattlesnakes may secrete CORT until a threshold response is reached, regardless of baseline levels. Overall, rattlesnakes appear resilient to the effects of researcher-induced disturbance in the laboratory and to two weeks of chronically elevated CORT in the field, as no change was detected in many of the parameters investigated

    Commonly collected thermal performance data can inform species distributions in a data‑limited invader

    Get PDF
    Predicting potential distributions of species in new areas is challenging. Physiological data can improve interpretation of predicted distributions and can be used in directed distribution models. Nonnative species provide useful case studies. Panther chameleons (Furcifer pardalis) are native to Madagascar and have established populations in Florida, USA, but standard correlative distribution modeling predicts no suitable habitat for F. pardalis there. We evaluated commonly collected thermal traits– thermal performance, tolerance, and preference—of F. pardalis and the acclimatization potential of these traits during exposure to naturally-occurring environmental conditions in North Central Florida. Though we observed temperature-dependent thermal performance, chameleons maintained similar thermal limits, performance, and preferences across seasons, despite long-term exposure to cool temperatures. Using the physiological data collected, we developed distribution models that varied in restriction: time-dependent exposure near and below critical thermal minima, predicted activity windows, and predicted performance thresholds. Our application of commonly collected physiological data improved interpretations on potential distributions of F. pardalis, compared with correlative distribution modeling approaches that predicted no suitable area in Florida. These straightforward approaches can be applied to other species with existing physiological data or after brief experiments on a limited number of individuals, as demonstrated here

    Divergent Serpentoviruses in Free-Ranging Invasive Pythons and Native Colubrids in Southern Florida, United States

    Get PDF
    Burmese python (Python bivittatus) is an invasive snake that has significantly affected ecosystems in southern Florida, United States. Aside from direct predation and competition, invasive species can also introduce nonnative pathogens that can adversely affect native species. The subfamily Serpentovirinae (order Nidovirales) is composed of positive-sense RNA viruses primarily found in reptiles. Some serpentoviruses, such as shingleback nidovirus, are associated with mortalities in wild populations, while others, including ball python nidovirus and green tree python nidovirus can be a major cause of disease and mortality in captive animals. To determine if serpentoviruses were present in invasive Burmese pythons in southern Florida, oral swabs were collected from both free-ranging and long-term captive snakes. Swabs were screened for the presence of serpentovirus by reverse transcription PCR and sequenced. A total serpentovirus prevalence of 27.8% was detected in 318 python samples. Of the initial swabs from 172 free-ranging pythons, 42 (24.4%) were positive for multiple divergent viral sequences comprising four clades across the sampling range. Both sex and snout-vent length were statistically significant factors in virus prevalence, with larger male snakes having the highest prevalence. Sampling location was statistically significant in circulating virus sequence. Mild clinical signs and lesions consistent with serpentovirus infection were observed in a subset of sampled pythons. Testing of native snakes (n = 219, 18 species) in part of the python range found no evidence of python virus spillover; however, five individual native snakes (2.3%) representing three species were PCR positive for unique, divergent serpentoviruses. Calculated pairwise uncorrected distance analysis indicated the newly discovered virus sequences likely represent three novel genera in the subfamily Serpentovirinae. This study is the first to characterize serpentovirus in wild free-ranging pythons or in any free-ranging North America reptile. Though the risk these viruses pose to the invasive and native species is unknown, the potential for spillover to native herpetofauna warrants further investigation

    Burmese pythons in Florida: A synthesis of biology, impacts, and management tools

    Get PDF
    Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control. (119 pp

    Understanding Metrics of Stress in the Context of Invasion History: the Case of the Brown Treesnake (Boiga irregularis)

    Get PDF
    Invasive species can exert rapid depletion of resources after introduction and, in turn, affect their own population density. Additionally, management actions can have direct and indirect effects on demography. Physiological variables can predict demographic change but are often restricted to snapshots-in-time and delayed confirmation of changes in population density reduces their utility. To evaluate the relationships between physiology and demography, we assessed metrics of individual and demographic stress (baseline and 1-h corticosterone (CORT), body condition and bacterial killing ability) in the invasive snake Boiga irregularis on Guam collected in intervals of 10–15 years. We also assessed potential discrepancies between different methods of measuring hormones [radioimmunoassay (RIA) versus enzyme immunoassay (EIA)]. The magnitude of difference between RIA and EIA was negligible and did not change gross interpretation of our results. We found that body condition was higher in recent samples (2003 and 2018) versus older (1992–93) samples. We found corresponding differences in baseline CORT, with higher baseline CORT in older, poorer body condition samples. Hormonal response to acute stress was higher in 2018 relative to 2003. We also found a weak relationship between circulating CORT and bacterial killing ability among 2018 samples, but the biological significance of the relationship is not clear. In an effort to develop hypotheses for future investigation of the links between physiology and demography in this and other systems, we discuss how the changes in CORT and body condition may reflect changes in population dynamics, resource availability or management pressure. Ultimately, we advocate for the synchronization of physiology and management studies to advance the field of applied conservation physiology

    Commonly collected thermal performance data can inform species distributions in a data-limited invader

    No full text
    Abstract Predicting potential distributions of species in new areas is challenging. Physiological data can improve interpretation of predicted distributions and can be used in directed distribution models. Nonnative species provide useful case studies. Panther chameleons (Furcifer pardalis) are native to Madagascar and have established populations in Florida, USA, but standard correlative distribution modeling predicts no suitable habitat for F. pardalis there. We evaluated commonly collected thermal traits– thermal performance, tolerance, and preference—of F. pardalis and the acclimatization potential of these traits during exposure to naturally-occurring environmental conditions in North Central Florida. Though we observed temperature-dependent thermal performance, chameleons maintained similar thermal limits, performance, and preferences across seasons, despite long-term exposure to cool temperatures. Using the physiological data collected, we developed distribution models that varied in restriction: time-dependent exposure near and below critical thermal minima, predicted activity windows, and predicted performance thresholds. Our application of commonly collected physiological data improved interpretations on potential distributions of F. pardalis, compared with correlative distribution modeling approaches that predicted no suitable area in Florida. These straightforward approaches can be applied to other species with existing physiological data or after brief experiments on a limited number of individuals, as demonstrated here

    Gradual and Discrete Ontogenetic Shifts in Rattlesnake Venom Composition and Assessment of Hormonal and Ecological Correlates

    No full text
    Ontogenetic shifts in venom occur in many snakes but establishing their nature as gradual or discrete processes required additional study. We profiled shifts in venom expression from the neonate to adult sizes of two rattlesnake species, the eastern diamondback and the timber rattlesnake. We used serial sampling and venom chromatographic profiling to test if ontogenetic change occurs gradually or discretely. We found evidence for gradual shifts in overall venom composition in six of eight snakes, which sometimes spanned more than two years. Most chromatographic peaks shift gradually, but one quarter shift in a discrete fashion. Analysis of published diet data showed gradual shifts in overall diet composition across the range of body sizes attained by our eight study animals, while the shifts in abundance of different prey classes varied in form from gradual to discrete. Testosterone concentrations were correlated with the change in venom protein composition, but the relationship is not strong enough to suggest causation. Venom research employing simple juvenile versus adult size thresholds may be failing to account for continuous variation in venom composition lifespan. Our results imply that venom shifts represent adaptive matches to dietary shifts and highlight venom for studies of alternative gene regulatory mechanisms
    corecore