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Invasive species can exert rapid depletion of resources after introduction and, in turn, affect their own population density.
Additionally, management actions can have direct and indirect effects on demography. Physiological variables can predict
demographic change but are often restricted to snapshots-in-time and delayed confirmation of changes in population density
reduces their utility. To evaluate the relationships between physiology and demography, we assessed metrics of individual and
demographic stress (baseline and 1-h corticosterone (CORT), body condition and bacterial killing ability) in the invasive snake
Boiga irregularis on Guam collected in intervals of 10–15 years. We also assessed potential discrepancies between different
methods of measuring hormones [radioimmunoassay (RIA) versus enzyme immunoassay (EIA)]. The magnitude of difference
between RIA and EIA was negligible and did not change gross interpretation of our results. We found that body condition was
higher in recent samples (2003 and 2018) versus older (1992–93) samples. We found corresponding differences in baseline
CORT, with higher baseline CORT in older, poorer body condition samples. Hormonal response to acute stress was higher
in 2018 relative to 2003. We also found a weak relationship between circulating CORT and bacterial killing ability among
2018 samples, but the biological significance of the relationship is not clear. In an effort to develop hypotheses for future
investigation of the links between physiology and demography in this and other systems, we discuss how the changes in CORT
and body condition may reflect changes in population dynamics, resource availability or management pressure. Ultimately,
we advocate for the synchronization of physiology and management studies to advance the field of applied conservation
physiology.
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Introduction

Due to biogeographic isolation, perturbation of island ecosys-
tems can have rapid, cascading, destabilizing effects (Nilsson
and Grelsson, 1995). A particularly salient type of ecosystem
perturbation occurs when invasive species are introduced to
islands (Fritts and Rodda, 1998; Spatz et al., 2017). Beyond
direct impacts on native species, invasive species also affect
the environments where they are introduced, influencing
resource availability and potentially their own population
dynamics (O’Dowd et al., 2003). These effects may be magni-
fied on islands such that after establishment, invaders must
respond to resource and population changes more rapidly
than in mainland invasions, where population expansion and
carrying capacity may not be geographically restricted to the
same degree (Ricciardi, 2007). Additionally, the added pres-
sure of removal efforts from managers may trigger changes in
demography, similar to responses to commercial harvest (de
Buffrénil and Hémery, 2002; Hamilton et al., 2007). Invasion
success in such dynamic environments may be influenced
by plasticity in traits influencing reproduction, growth and
dispersal (Richards et al., 2006; Parker et al., 2013). Due
to their capacity to rapidly respond to dynamic ecosystem
changes, successful island invaders are an interesting case
study in understanding ecological resilience of animal pop-
ulations (Sax et al., 2007). To facilitate the successful efforts
made to both conserve native species and manage invasive
species, it is integral to understand the resilience (or lack
thereof) of invasive species to ecosystem change.

Ecological resilience is difficult to measure, as long-term
monitoring of animal population responses to resource-
availability, management or environmental change is costly
and time-consuming (Wintle et al., 2010). Individual physio-
logical and morphological responses can be useful to highlight
demographic trends in populations (Young et al., 2006). In
some cases, physiological metrics may reveal changes before
population-level effects are apparent, e.g. predicting increased
likelihood of mortality in salmonid fish before an increase in
death rate is observed (Ham and Pearsons, 2000; Cooke
et al., 2012). Unfortunately, evidence for direct links between
individual-level physiology and population change are rare
(Cooke et al., 2012; Bergman et al., 2019), perhaps owing to
the rarity of long-term studies due to uncertainty in long-term
funding stability, caution in interpreting variables obtained by
different methods (Szeto et al., 2011) and/or the requirement
of many funding agencies and publication outlets that
studies be ‘novel’ to advance scientific knowledge. Although
problematic, a ‘snapshots-in-time’ approach is often the only
post hoc option for evaluating how physiological data inform
later population change in wildlife conservation or invasive
species management (McCormick and Romero, 2017).
Because demographic signals often lag behind physiological
metrics (McCormick and Romero, 2017) it is important to
re-assess published physiological data in the context of later
observed demographic change to better understand their
utility.

Commonly employed metrics for assessing individual and
demographic stress, i.e. perturbations to individual animal
health and subsequent population trends, include condition
indices (Stevenson and Woods, 2006), glucocorticoid hor-
mone levels (Bonier et al., 2009) and indices of immune
function (Downs and Stewart, 2014). Condition indices serve
as measures of an individual’s ability to convert resources
into mass relative to conspecifics. When measured across a
segment of the population or across time, condition indices
can be interpreted as indicators of resource availability
(Johnson, 2005; Smith and Iverson, 2016) or population
trends (Jennings et al., 2006). Glucocorticoid hormone levels
are another commonly employed metric. Glucocorticoid
hormones have a wide range of functions across species,
as they can influence glucose and protein metabolism,
reproduction and offspring fitness (reviewed in Wingfield
et al., 1998; Wingfield and Sapolsky, 2003; Landys et al.,
2006; Love et al., 2013; Romero and Wingfield, 2015).
Glucocorticoids are often equated with ‘stress’ because
circulating levels of these hormones can be altered during
food shortage, after aggressive encounters and after acute
confinement (Vera et al., 2017; MacDougall-Shackleton et
al., 2019). We strive to avoid confounding glucocorticoids
with stress in this manuscript. Understanding of the direct
effects of glucocorticoid hormones across vertebrate species
is still a work in progress (Jessop et al., 2013; Vera et al.,
2017; Romero and Gormally, 2019), yet these hormones
have some demonstrated utility as an indicator of population
status in wild animals (Kitaysky et al., 2007; Escribano-Avila
et al., 2013; Sorenson et al., 2017). Another implicated
effect of fluctuating glucocorticoids is their influence on
immune function (Martin, 2009), which itself is gaining
utility as a metric of individual and population health (Demas
et al., 2011; Downs and Stewart, 2014). Immune function
is important for immediate defense and survival against
pathogens. Investment in immune defenses may be altered
when other energy demands take priority (i.e. reproduction,
dispersal, self-maintenance during starvation; reviewed
in Downs and Stewart, 2014). Immune investment may
also serve as an important indicator of ongoing disease
processes in a population (Hawley and Altizer, 2011).
Condition, glucocorticoid levels or immune function are
not necessarily expressed independently within individ-
uals, as these factors may respond to similar ecological
pressures and physiological pathways. Interpretation of
multiple synergistic physiological variables as a ‘stress
syndrome’ may thus better inform changes in wild animal
health or population trends rather than relying on a
single metric (Madliger and Love, 2015; Sandfoss et al.,
2020). We thus chose to investigate changes in synergistic
physiological variables over time in an infamous invasive
predator.

The brown treesnake (Boiga irregularis, hereafter, BTS)
on the island of Guam is a well-documented example of an
introduced vertebrate influencing its own resource dynamics
via extirpation of native avian prey (Savidge, 1987). The
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mildly venomous colubrid snake was introduced to Guam,
an island with no native snakes, in the 1940s, coinciding
with the consolidation of West Pacific US military assets
on the island following World War II (Fig. 1; reviewed in
Rodda et al., 1992). BTS remained largely unstudied until
the mid-1980s (Rodda et al., 1992). BTS research largely
began after they were implicated as the cause of plummeting
native bird populations (Savidge, 1987), and focus turned to
the now island-wide snakes as invasive predators (Engbring
and Fritts, 1988). Since many studies have been conducted
on the snake with the goal of preventing the spread of
BTS to other Pacific islands and the control, reduction and
potential eradication of BTS on Guam (reviewed in Engeman
et al., 2018) to facilitate the conservation and re-introduction
of near-extinct avian species such as the flightless Guam
rail (Gallirallus owstoni). BTS control has been difficult,
complicated by the introduction of other nonnative prey
species to Guam that may have subsidized the BTS popu-
lation and allowed for continued growth after the loss of
native birds (Savidge, 1988; Fritts and Rodda, 1998; Rodda
et al., 1999; Christy et al., 2007a; Campbell et al., 2012;
Olson et al., 2012; Wostl et al., 2016; Fig. 1). Management
pressure has recently increased on portions of the BTS pop-
ulation (Engeman et al., 2018; Siers et al., 2018; Fig. 1).
Potentially, as a result of prey availability, management or
other factors, BTS population estimates have fluctuated over
time (Savidge, 1991; Rodda et al., 1992; Smith et al., 2016;
Fig. 1). BTS on Guam are perhaps the longest continuously
studied vertebrate invasion, including more recent studies
on stress and reproductive physiology (e.g. Mathies et al.,
2001; Moore et al., 2005; Waye and Mason, 2008; Aldridge
et al., 2010; Mathies et al., 2010). The nature of this well-
studied system affords opportunities to integrate historical
and recent data, specifically to assess physiological responses
over time.

By combining previously and recently collected data, we
investigate changes in metrics commonly associated with
demographic stress over time to assess the response or
resilience of island invaders as they react to a changing
environment. Specifically, we explore the changes in BTS
body condition and corticosterone (CORT; a glucocorticoid
hormone) at-capture and following acute confinement stress
(Moore et al., 2005; Waye and Mason, 2008) to recently
collected data (reported herein). We hypothesize that body
condition and CORT are negatively correlated and discuss
how these variables and their relationships may be altered
by changes in population density, prey availability and
management pressure. We also investigate the hypothesis
that CORT influences immune function by assessing the
relationship between CORT and plasma bactericidal capacity.
We discuss our results in the context of the dynamic
environment on Guam and offer hypotheses for future
research avenues using this infamous island invasion as a
system for continued eco-physiological investigation and
conservation efforts.

Methods
Snake sampling
We collected adult, reproductively active BTS (greater than
90-cm snout–vent length, hereafter SVL; Savidge et al., 2007)
in 1992 and 1993 (Moore et al., 2005), 2003 (Waye and
Mason, 2008) and, in 2018, by visual searching with head-
lamps for 3 h immediately following sunset. In all years,
sampling was concentrated in the northern portion of the
island in primarily limestone forest habitats and adjacent
to rural roads. Immediately upon capture, we bled snakes
(hereafter referred to as baseline) from the caudal vessels by
heparinized syringe (2003, 2018) or via collection of blood
after decapitation (1992–93). The specific timing of handling
before blood draw was not recorded for 1992–93 and 2003
but is estimated to be within 3–5 min of capture (Moore
et al., 2005; Waye and Mason, 2008). In 2018, we used
stopwatches from disturbance of snake to blood collection,
resulting in baseline samples collected in a mean of 4 min
and 46 s (± 1 min and 56 s SD) after capture. In 2003 and
2018, snakes were subjected to acute confinement in a cloth
bag for 1 h, after which we obtained a second blood sample
(hereafter, 1 h). In 2018, we centrifuged blood to separate
plasma and then froze samples in liquid nitrogen vapour
in the field following blood draws to prevent complement
degradation for our immune assay. In 1992–93 and 2003,
we separated plasma within 12 h of sample collection, then
stored samples frozen at −20◦C until shipment from Guam
and at −70 to −80◦C until analysis (Moore et al., 2005;
Waye and Mason, 2008). We measured the SVL of snakes
with cloth measuring tape and mass using a spring scale.
In 2018, snakes were euthanized via isoflurane inhalation
followed by intracardiac injection of potassium chloride. All
procedures were conducted according to approved animal
care and use protocols (Moore et al., 2005; Waye and Mason,
2008; University of Florida IACUC 201709774).

CORT assay
We assessed total blood CORT via radioimmunoassay (RIA)
for 1992,1993, 2003. RIA methods for plasma from 1992–
3 and 2003 are described in Moore et al. (2005) and Waye
and Mason (2008), respectively. Hormone measurements can
vary both by laboratory and among methods (e.g. Nizeyi
et al., 2011; Szeto et al., 2011; Yadav et al., 2013; Fanson
et al., 2016). Thus, we assessed plasma from 2018 using
two methods [RIA and enzyme immunoassay (EIA)] from
identical aliquots to evaluate the potential issues with multi-
study comparisons of BTS hormones. We assessed plasma
from 2018 via RIA using the same reagents and techniques as
described in Moore et al. (2005) at Virginia Tech. Intra-assay
coefficient of variation for 2018 RIA samples was 5.5%. The
within-year interassay variation for RIA was <18%. At the
University of Florida, we validated an EIA kit (Arbor Assay,
Ann Arbor, MI; KO14-H5) for use with B. irregularis using
serially diluted samples from pools of B. irregularis plasma
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Figure 1: Timeline of select events during the invasion of B. irregularis on Guam. Population estimates are for Northern Guam, where the
majority of sampling for this study took place. Subscripts indicate source(s) of information. Note that estimates of snake density should be
interpreted with caution, as studies may not be directly comparable due to different methods. Introduction dates are estimates based on the
literature. References: (i) Savidge, 1987; (ii) Austin et al., 2011; (iii) Fritts and Rodda, 1998; (iv) Christy et al., 2007a; (v) Savidge, 1988; (vi) Rodda et
al., 1992; (vii) Engeman 1998; (viii) Wiewel et al., 2009; (ix) Engeman et al., 2018; (x) Wostl et al., 2016; (xi) Olson et al., 2012; (xii) Smith et al., 2016;
(xiii) Siers et al., 2018.

for parallelism and quantitative recovery. We diluted plasma
samples 1:100 with assay buffer and plated them in duplicate
according to the protocol provided by the kit manufacturer.
We determined the optical density of each well at 450 nm
with a plate reader (Epoch, BioTek); results are reported in
ng/mL. Sample pairs (baseline and 1 h) from all individuals
were assigned haphazardly to each plate. Average recovery
was 99.14%, and the kit limit of detection is 16.9 pg/mL. The
mean intra-assay coefficient of variation was 3.93%.

Bacterial killing assay
We employed a functional immune assay that evaluates the
ability of complement and other anti-microbial components
of the blood plasma to kill or inhibit growth of bacteria (mod-
ified from French et al., 2012). We performed all bacterial
killing assays within 30 days of collection. Briefly, we diluted
a working solution of Escherichia coli (ATCC no. 8739)
to a 103 colony forming units solution in sterile phosphate
buffered saline (1 M PBS; Lonza VWR catalog no. 12001-
67). We plated samples in triplicate in a sterile 96-well plate. In
each well, we added 5 μL of E. coli solution to 18 μL of diluted
plasma and incubated for 30 min at 37◦C. After this initial
incubation period, we added 125-mL sterile tryptic soy broth
(TSB) and scanned plates for initial absorbance at 300 nm
using a microplate reader. We then incubated plates for 12 h at
37◦C, after which we scanned them again to quantify growth
of E. coli. Each plate had six positive control wells containing

E. coli, PBS and TSB and six negative control wells containing
PBS and TSB matching the volume and concentrations of the
wells with samples. Rather than plating a single, ‘optimal’
plasma dilution (e.g. the dilution where an average of all
samples kills 50% of bacteria; French et al., 2012), we used
a dilution series to determine the dilution at 50% killing
capacity of BTS plasma. We initially diluted each plasma
sample to 1:16 with PBS (where most individuals showed
100% killing in pooled samples), then serially diluted by
half until 1:128 (where most individuals showed 0% killing
in pooled samples) and conducted the assay as above. To
calculate dilution at 50% bacterial killing capacity of BTS
plasma, first, the difference in absorbances for each sample set
are calculated (Equation 1), followed by calculation of percent
bacterial killing ability, accounting for potential variation
in TSB absorbance across plates (Equation 2). We assigned
samples with calculated percent killing above 100 or below
0 as 100 or 0 for further analyses, respectively. For each
individual sample dilution series, we generated a 4-parameter
logistic regression curve using the nlme package in R (Pinheiro
et al., 2020; version 3.4.0 Patched), setting dilution as x values
and the percent killing ability at each dilution as the y values,
then extracting the x-value from each curve where y = 50%
killing. This x value (or dilution at 50% bacterial killing
ability) was used in all subsequent bacterial killing ability
analyses. A sample with a lower x value indicates that a lower
concentration of plasma was necessary to achieve 50% killing
of E. coli; thus, a 1:32 dilution represents better bacterial
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killing ability than a 1:16 dilution.

Δabs =
∑n

i=0
(
abs12 − abs0

)

n
, (1)

where abs12 represents the absorbance in a single well at 12 h
and abs0 at 0 h and n represents the number of replicates
for each sample set within a plate (n = 3 for each individual
sample dilution and n = 6 for positive control or negative
control, respectively).

Percent Bacterial Killing Ability

=
(
Δpos − Δneg

) − (
Δsamp − Δneg

)

(
Δpos − Δneg

) ∗ 100,

where �pos, �neg and �samp represent the results of Equa-
tion 1 applied to the set of positive control wells, negative
control wells and individual sample dilution wells for each
plate, respectively. Subtraction of �neg is applied as a correc-
tion for variation in TSB absorbance across plates.

Body condition
We calculated body condition index by extracting the resid-
uals from a cubic regression of natural log-transformed mass
and natural log-transformed SVL from a larger morphometric
dataset comprised 526 BTS collected on Guam from 1991–93,
2003 and 2018. Fat content was unavailable from 1992–93
snakes and specimens are unavailable for years prior to 2018;
thus, we were unable to use more sophisticated methods of
calculating body condition (Falk et al., 2017) to conduct this
long-term comparison.

Statistical analyses
Raw data on snakes from 1992–93 and 2003 were acquired
from I.T. Moore and H. Waye, respectively. Data for base-
line CORT and body condition were available for all years;
to account for potential body condition variation among
seasons, we restricted data to samples collected at the end
of the dry season (March through May: 1992 n = 18; 1993
n = 14; 2003 n = 15; 2018 n = 23). Data for 1 h CORT was
available for 2003 (baseline n = 46; acute stress n = 14) and
2018 (baseline n = 23; 1 h n = 24); analyses restricted to sam-
ples collected in spring versus year-round did not change the
results. We report year-round analyses as this increased the
number of 1 h samples from 2003. We conducted bacterial
killing assays on 2018 samples (baseline n = 21; 1 h n = 22).
We used linear models in R (R Core Team, 2019) to model
body condition (Model 1) and baseline CORT across years
(Model 3; Table 1). We used linear mixed effects models
using the lme function in package lme4 in R (Bates et al.,
2015) to assess CORT methods (RIA versus EIA, Model 2),
acute CORT response (Model 4) and bacterial killing ability

Figure 2: Comparison of EIA and RIA results for quantifying total
plasma CORT concentration in B. irregularis collected in 2018
immediately after capture (baseline) and after snakes were subjected
to acute confinement in a cloth bag for 1 h. Box plots depict the
minimum, first quartile, median, third quartile and maximum.
Individual points represent samples. Lines connect aliquots of the
same sample. Values shown are untransformed.

(Model 5), with animal ID as a random effect to account for
repeated sampling. To allow interpretation of baseline and 1 h
CORT levels in Models 2, 4 and 5, we included sampling
timepoint as a factor (Table 1). We did not include time-to-
bleed as a covariate in models because (i) these data were only
available for 2018 samples and (ii) we did not observe a rela-
tionship between time-to-bleed and baseline CORT for 2018
samples (linear, quadratic, cubic all P > 0.2). To assess the
differences between groups, we used Tukey’s post hoc tests.
We transformed CORT values via natural log-transformation
after adding 1 (i.e. log1p transformation) and used angular
transformation on 50% bacterial killing dilution. We checked
data to meet assumptions of normality and homoscedasticity
for respective analyses. We ran identical Models 3–5 for each
2018 CORT method (EIA and RIA) and report results of both
to compare differences in interpretation related to different
locations or hormone measurement methods.

Results
CORT assay type
CORT assay type (EIA versus RIA) on 2018 samples slightly
affected output ANOVA results, with a significant interac-
tion between type and sampling timepoint (F1,100 = 15.89,
P < 0.001). Tukey post hoc tests revealed 1 h CORT levels
were indistinguishable between methods (P = 0.97) and base-
line CORT levels were marginally different (1.02 ± 0.13 SE
ng/mL higher in EIA compared with RIA; P < 0.001; Fig. 2).

Body condition
Body condition was different by year (F3,62 = 10.66, P < 0.001;
Fig. 3); post hoc analyses revealed that snakes in 1992 and
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Table 1: Models reported assessing metrics of individual and demographic stress in B. irregularis over time

Model number Model response Model predictors Random effects

1 Body condition Yeara × sex None

2 Log CORT Assay methodb × sampling timepointc Individual
identifier

3 Log Baseline CORT Yeara × sex + yeara × body condition None

4 Log CORT Yeard × sampling timepointc + sex +body condition Individual
identifier

5 Arcsine 50% bacterial
killing dilution

Log CORT × sampling timepointc + body condition + body
temperature + sex

Individual
identifier

Asterisks indicate interactions between main effects included in the model. Duplicate models of 3 and 4 were run with either 2018 EIA CORT or 2018 RIA CORT.
aFactor with levels: 1992, 1993, 2003, 2018.
bFactor with levels: RIA and EIA.
cFactor with levels: baseline and 1 h.
dFactor with levels: 2003, 2018 (1992 and 1993 1 h data not collected).

Figure 3: Log total baseline plasma CORT (measured by RIA) was
negatively associated with relative body condition in B. irregularis on
Guam in all years except 1992. CORT was higher and Body condition
was lower in 1992 and 1993 compared with 2003 and 2018. Shaded
area represents the 95% confidence interval.

1993 were similar in body condition (P = 0.28) but lower
than both 2003 (0.20 ± 0.08, P = 0.048 and 0.25 ± 0.08,
P = 0.01, respectively) and 2018 (0.28 ± 0.07; 0.33 ± 0.07;
both P < 0.001). Body condition between 2003 and 2018 was
indistinguishable (P = 0.82). There was no observable differ-
ence in body condition for the sexes by year (F3,62 = 0.53,
P = 0.66) or in general (F1,61 = 0.78, P = 0.38).

Baseline CORT (1992–93, 2003, 2018)
The relationship between body condition and baseline CORT
depended on year (F3,58 = 4.01, P = 0.01). In all years except
1992, CORT was negatively correlated to body condition
(Fig. 3). Baseline CORT differed by year (F3,58 = 49.92,
P < 0.001), with 1992 and 1993 having indistinguishable
levels (P = 1.00), but both with higher baseline CORT than

2003 (14.54 ± 0.38 ng/mL, P < 0.001; 14.47 ± 0.38 ng/mL,
P < 0.001) and 2018 (5.95 ± 0.37 ng/mL, P < 0.001,
5.92 ± 0.37, P < 0.001). In 2018, baseline CORT was slightly
higher than 2003, but this was marginally non-significant
(1.24 ± 0.36 ng/mL; P = 0.05). Sex was not important
(F1,58 = 2.08, P = 0.15), and we did not detect an interaction
between year and sex (F3,58 = 0.72, P = 0.54).

The EIA model showed similar results except that base-
line CORT between 2003 and 2018 are now statistically
distinguishable (2.57 ng/mL greater in 2018; P = 0.0002).
EIA models estimated a smaller difference between 2018 and
both 1992 and 1993 CORT than RIA models (average 2.59–
2.6 ng/mL less). Standard errors for RIA and EIA model
estimates were comparable (i.e. within 0.05 ng/ml of one
another).

Baseline and 1 h acute confinement CORT
(2003, 2018)
There was no significant interaction between sampling
timepoint and year (F1,35 = 2.03, P = 0.16) indicating similar
directions of responses to 1 h of acute confinement, which
led to increased CORT in both years (F1,35 = 142.53,
P < 0.001, increase of 2.91 +/− 0.21 ng/mL for 2003
and of 4.69 ± 0.19 ng/mL for 2018). CORT differed
by year (F1,66 = 90.76, P < 0.001), with 2018 baseline
1.17 ± 0.19 ng/mL higher than 2003 baseline (P = 0.002),
2018 1 h CORT 2.16 ± 0.25 ng/mL higher than 2003 1 h
CORT (P < 0.001;Fig. 4). Body condition was negatively
associated with overall CORT levels (−0.78 for every
log increase in CORT, F1,66 = 4.75, P = 0.03). Sex was
not associated with CORT concentrations (F1,66 = 0.002,
P = 0.96).

The EIA model showed similar results, with slight differ-
ences in mean differences calculated between groups. EIA
estimates 2.22 greater difference between baseline and 1 h
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Figure 4: Log total plasma CORT of B. irregularis measured by RIA
immediately after capture (baseline, dark shading) and after snakes
were subjected to acute confinement in a cloth bag for 1 h (light
shading) in 2003 and 2018. Letters indicate significantly different
groups.

CORT in 2018, 1.52-ng/mL greater difference between each
year’s baselines and 0.12-ng/mL greater difference between
each year’s 1-h acute confinement samples. Standard errors
for RIA and EIA model estimates were comparable (i.e. within
0.05 ng/ml of one another).

Bacterial killing ability (2018)
CORT was positively related to killing ability (0.03 ±
0.02 ng/mL increase in CORT for every unit of decrease
in killing dilution, F1,16 = 12.72, P < 0.003; Fig. 5). There
was no relationship between killing ability and sampling
timepoint (i.e. baseline and 1 h; F1,16 = 0.02, P = 0.88),
body condition (F1,21 = 0.29, P = 0.59), body temperature
(F1,16 = 0.73, P = 0.12) and sex (F1,21 = 1.70, P = 0.21) and
no interaction was observed between CORT and sampling
timepoint relating to their effects on bacterial killing ability
(F1,16 = 0.20, P = 0.66).

The EIA model showed similar results, slightly differing
in the magnitude of the estimated relationship of CORT
and bacterial killing ability, with an additional increase of
0.02 ng/mL for every unit decrease in killing dilution.

The y-axis is inverted to illustrate that samples with a lower
concentration of plasma necessary to achieve 50% killing
of E. coli represent better bacterial killing ability. Dashed
lines connect baseline and 1 h stressed samples for each
individual. Points without lines indicate individuals for which
the corresponding sample did not have enough plasma for
this assay. Although sampling timepoint was not a significant
predictor, many lines show a positive trend for lower dilution
samples from 1 h stressed individuals.

Figure 5: Bacterial killing ability (the arcsine transformed dilution of
plasma required to kill 50% of bacteria) was positively related to log
total plasma CORT levels in B. irregularis (measured by RIA) sampled
in 2018, such that higher CORT was associated with better bacterial
killing ability. Blood samples were drawn immediately after capture
(baseline, dark shading) and after snakes were subjected to acute
confinement in a cloth bag for 1 h (light shading). Letters indicate
significantly different groups.

Discussion
To maximize transparency and to avoid conflation of hypoth-
esis generation with conclusion, we have opted to discuss our
results in two contexts. First, we briefly discuss our results
within the context of data collected herein (i.e. how our
metrics were related to one another). Finally, we discuss our
results in a broader ecological context to generate hypothe-
ses for continued investigation of the intersections between
physiology and demography in invasive species, using BTS
as a focal species. Our work represents a long-term effort
compiled from multiple shorter studies in a natural setting;
thus, we were unable to directly control population density,
resource availability or management pressure post hoc. This
is the reality of many conservation and management studies:
scientists and managers lack a crystal ball to predict data
needed to interpret the past and the scope to direct the
collection of future data with consistent methodologies over
time. Nonetheless, both must make use of the imperfect data
that do exist. Thus, hypothesis generation is an important
and useful exercise in furthering the field of conservation
physiology and especially in clarifying the utility of nebulous
but commonly used metrics such as CORT.

Findings at face value
There were negligible differences between EIA and RIA
measurement methods. Some studies assessing differences
between the two methods have observed much higher levels
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via EIA compared with RIA (Nizeyi et al., 2011; Szeto et
al., 2011; Yadav et al., 2013). The slightly higher levels in
baseline CORT measured by EIA in this study are likely
due to increased sensitivity of EIA relative to RIA, rather
than differences in laboratory locations (Fanson et al., 2016).
Indeed, recent studies assessing the two methods have found
differences only at low concentrations (Burraco et al., 2015;
Wheeler et al., 2017). This slight difference did not change
overall interpretation of trends in our data regarding the
2018 samples. Given this result, long-term monitoring of BTS
plasma CORT is possible using either RIA or EIA and may
be possible for other species as well.

We observed a negative association between baseline
CORT and body condition in the later years. This relationship
has been reported many times before in colubrid snakes
(Moore et al., 2000; Waye and Mason, 2008; Lind et al., 2018;
but see Dayger et al., 2013) and other reptiles (reviewed in
Moore and Jessop, 2003). Our data challenge the general
usefulness of body condition as a correlate of baseline
CORT levels in small-bodied colubrid snakes. The differences
between years (i.e. a positive relationship in 1992), highlights
that context is important to interpret these relationships, and
a negative relationship between baseline CORT and body
condition in snakes is not a hard-and-fast rule (discussed in
Sandfoss et al., 2020).

We observed increased baseline CORT in 1992–93 relative
to 2003 and 2018 across all sexes. We speculate on proximate
causes of this observation below. The response of CORT to
acute confinement differed between 2003 and 2018. A 2000
study assessing CORT in free-ranging BTS on Guam versus
2-h confinement more closely matches CORT results from
2018; however, the snakes subjected to acute confinement in
the 2000 study had spent one night in a trap, so CORT levels
could be confounded by increased CORT while in the trap
(Mathies et al., 2001). Thus, whether lower 1 h CORT in 2003
represents a dampened acute response or higher 1 h CORT
in 2018 represents a more sensitive response is difficult to
interpret. Although body condition was not different between
2003 and 2018, previous work demonstrates a link between
dampened 1 h CORT and low body condition in a viperid
snake (Sandfoss et al., 2020). The observed difference in
response to acute confinement between years may be partially
explained by other interacting processes (discussed below).

A weak positive correlation between plasma bactericidal
capacity and CORT levels was observed, but it is unknown
whether the magnitude of the correlation is biologically sig-
nificant. Interestingly, the 1 h and baseline samples were not
statistically different, although CORT was higher at 1 h. This
may be an artefact of small sample size, as the direction of the
relationship between CORT and bactericidal capacity within
individuals was relatively consistent (Fig. 5). Alternatively,
while CORT can affect plasma bactericidal ability in as little
as 10 min after handling in house sparrows (Gao et al., 2017),
CORT can also take longer to ultimately exert downstream
effects (Buttgereit and Scheffold, 2002). If this is the case

in our study, the CORT level at 1 h may not necessarily
reflect its effect on immune function in the same sample. In
other words, the immune function at 1 h may be influenced
by baseline levels of CORT and acute confinement would
affect immune function at a future timepoint, which we
did not examine. Regardless, the weak positive correlation
of bactericidal capacity and CORT is interesting; it lends
evidence towards CORT (baseline and 1 h) as potentially
preparative for immunity as proposed by Sapolsky et al.
(2000), rather than suppressive, as is assumed in many studies
(reviewed in Vera et al., 2017). The relationship between
CORT and immune function is context-dependent, may be
species-specific (McCormick et al., 2015) or sometimes may
be a misinterpretation. For example, CORT and immunity
may be correlated but the variables may not influence each
other; CORT and immune function may simply be responding
at the same time (i.e. upon capture) to different pathways that
are activated by capture stress (reviewed in Vera et al., 2017).
There is no previous immune data for BTS, so we are unable to
speculate if this relationship is characteristic of the species, if
this is a plastic or adaptive response to current or past events
or if the CORT-immune correlation is biologically relevant;
this may be resolved with continued study.

Findings in an ecological context
Regarding CORT and body condition, our findings lead to
three hypotheses to explain the patterns, which are not mutu-
ally exclusive and which require further experimental testing.
These processes affect one another and carefully designed
or timed experiments (e.g. in conjunction with future and
ongoing management efforts) may elucidate these relation-
ships. We discuss the potential contributions of each process
to our observed data given what has been reported for other
vertebrate populations.

Density of snakes

In Guam, the density of BTS has decreased from surveys
just prior to sampling in 1992–93 (Rodda et al., 1992), to
the most recent survey in 2016 (Smith et al., 2016; Fig. 1).
Decreasing density estimates in animal populations can result
from human intervention (e.g. culling as management effort;
Gordon et al., 2004), decreased resource availability (Salamo-
lard et al., 2000), disease processes (reviewed in de Castro and
Bolker, 2005) and/or variable population estimation methods
(reviewed in Freckleton et al., 2006). We will discuss potential
influences of management and resource availability on our
results separately. While a discussion of the comparability of
data from different population density estimation methods is
beyond the scope of this article, it is important to note that
there is some margin of error in density estimate comparisons.
Because there is no density estimate available for the middle
of our sampling period, we restrict our discussion to general
differences observed between the initial (1991–92) and two
latter periods (2003 and 2018, i.e. we do not discuss differ-
ences in 1 h CORT levels between 2003 and 2018).
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Changes in density can affect interspecific interactions
(e.g. Wal et al., 2014), which may influence transmission of
infectious disease (reviewed in Lloyd-Smith et al., 2005), and
competition for mates (Jirotkul, 1999). There is currently
little evidence to suggest the influence of disease processes
on population density for BTS on Guam. Exotic cestode
parasites have been documented in BTS from Southern Guam,
where infected snakes had higher body condition; parasites
are not fatal and are likely transmitted by consumption of an
intermediate host so may not be related to density (Holldorf et
al., 2015). We did not observe the parasites in snakes in our
study that were collected outside the prevalence area (Holl-
dorf et al., 2015); thus, it is not relevant to body condition
or CORT differences in our study. To our knowledge, fatal
disease has only been documented in BTS that were captive
for at least 1 year (Nichols et al., 1999). Snakes included in
our study were not noted as diseased, excepting one individual
collected in 2018 excluded from analysis above. This animal
had skin lesions, but histological analysis was determined by
UF Veterinary Diagnostic Laboratories to be related to ecdysis
issues rather than viral, bacterial or fungal infection (Case no.
A18-0343-R). Overall, disease processes related to population
density in BTS are unlikely to explain the pattern in our data,
but other interspecific interactions are implicated.

Individuals in high density populations may interact with
conspecifics more often, which may lead to increased aggres-
sion (Knell, 2009). Aldridge et al. (2010) suggested that
elevated CORT levels in male snakes observed in 1992–
93 as discussed in Moore et al. (2005) may be a result of
increased combat at higher densities. While male BTS com-
pete for mates via combat in captivity (Greene and Mason,
2000), and presumably in the wild, it has not yet been doc-
umented in the native or introduced range. In some reptiles,
losers in combat show increased CORT levels 1-h post fight
(Schuett et al., 1996; Schuett and Grober, 2000) or maintain
increased CORT levels up to 30 days (Greenberg et al.,
1984), while in one lizard species, CORT is increased in
winners for an unknown duration (Baird et al., 2014). It is
unknown how long CORT is altered after combat in snakes
or how BTS respond hormonally to combat. If ‘loser’ males
exhibit increased CORT in BTS, this is a possible partial
explanation of our observed higher CORT at higher density.
There appears to be few receptive or gravid females at any
given time (Rodda et al., 1999; Savidge et al., 2007), even
in the native range (Whittier and Limpus, 1996; Trembath
and Fearn, 2008). It is possible that at higher densities,
more males compete for the same female, leading to more
‘losers’. In addition to combat, increased conspecific avail-
ability in high-density populations may increase stimulation
of mate-searching behaviour (Greene et al., 2001; Mathies
et al., 2013). Some male snakes exhibit lower body condi-
tion in breeding season because breeding precedes feeding
(O’Donnell et al., 2004). The authors are unaware of this
phenomenon in BTS but concede the possibility of lower body
condition in male BTS pursuing females. While there is some
evidence for density-dependent interactions influencing our

findings for males, increased male combat and mate-searching
do not explain why we observed similar CORT and body
condition results in female snakes.

Both receptive and possibly non-receptive female BTS may
be harassed by male BTS attempting to breed (Mathies et al.,
2013). At high densities, increased interactions with males
appears to cause physiological stress via increased lactate in
female garter snakes (Shine et al., 2003), but we are unaware
of similar studies quantifying CORT in female snakes. Even
when harassment by males is severe (e.g. in female garter
snakes emerging from a communal den site) females are only
delayed from feeding by a few days (Shine et al., 2000). We
thus doubt that female body condition is affected by density-
dependent male mating attempts, assuming food availability
is constant. In female snakes, anorexia is typically associated
with gravidity (Gregory et al., 1999), which, as noted above,
is rarely observed and unlikely to affect our body condition or
CORT results. As we did not observe differences between the
sexes in body condition or CORT, it is difficult to reconcile
the possibility of density-dependent increased interactions as
wholly explanatory of our data. However, until now, we
have ignored another key density-dependent effect. Increased
density certainly puts pressure on limited food resources,
which may aid in explaining our observations.

Food availability

Our understanding of fluctuating prey availability on Guam
is based on a combination of surveys that studied prey species
presence and BTS diets (see Fig. 1 timeline). By the time of our
study, endothermic prey was likely consistently at low levels.
Local avifauna were mostly extirpated by 1986 due to depre-
dation by BTS (Savidge, 1987). At the time of our study, native
birds were not a major component of BTS diets, although
some consumption of domestic chicken chicks and eggs along
with introduced avian species is documented (Savidge, 1988;
Siers et al., 2017a). Introduced small mammals, consumed by
large BTS (Savidge, 1988), also decreased relative to estimates
before our study period (Wiewel et al., 2009). The species
composition and population levels of ectothermic prey have
been in flux. Ectothermic preys are common in the diet of
BTS (Savidge, 1988; Siers, 2015) and comprise a majority of
the diet in small BTS, which prefer geckos to neonate rodents
(Lardner et al., 2009). About the time BTS were introduced,
a skink (Carlia ailanpalai) also established, becoming com-
mon around 1968 (Austin et al., 2011), and a house gecko
(Hemidactylus frenatus) was already established (Rodda and
Fritts, 1992). In the early ‘90s, many native lizard species
were noted as scarce (pers comm in Savidge, 1991; Rodda
and Fritts, 1992; Campbell et al., 2012). Carlia ailanpalai
and H. frenatus increased by the late ‘90s, apparently in
response to a decline in nonnative shrews (Suncus murinus;
Fritts and Rodda, 1998), but perhaps also to a synchronous
decline in BTS population (Rodda et al., 1992; Campbell et
al., 2012). It is difficult to provide concrete estimates on how
lizard populations have since changed, due to unresolvable
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confounds in the only long-term study conducted (Rodda
et al., 2015). In addition to lizards, BTS consume frogs in
their native range (Shine, 1991) and on Guam (Christy et
al., 2007a; Cook, 2012; Mathies et al., 2012; Siers, 2015);
although they were uncommon in the diet overall by 2012
(Siers, 2015). Five frog species were introduced to Guam in the
2000s (reviewed in Christy et al., 2007a,b), two of which were
established and common by 2012 (Olson et al., 2012; Wostl
et al., 2016). To our knowledge, there have been no published
diet contents of BTS since Siers’ (2015) investigation and no
BTS prey preference experiments using frogs. Cannibalism
is also documented in BTS (Engeman et al., 1996) but may
be uncommon. Without concrete estimates of ectothermic
prey populations, it is difficult to interpret our data in terms
of overall food availability. However, knowledge of BTS’s
cosmopolitan diet combined with other studies relating food
availability, body condition and CORT responses lead us to
speculate on the effects of relative prey abundance.

Based on the information chronicled above, our samples
were collected when endothermic prey were likely consistent
across years, while ectothermic prey were relatively scarce
in 1992–93, increased by 2003 and further increased in
2018 with introduced frogs. Fluctuations in availability of
ectothermic prey are likely to influence the juvenile size class
(Savidge, 1988, 1991). Although we sampled adult snakes,
their previous experience as juveniles may inform their sur-
vival, reproduction and physiology as adults (Marcil-Ferland
et al., 2013; Holden et al., 2019). Interestingly, Rodda et al.
(1999) found that lizard (but not frog) abundances corre-
sponded to BTS abundances of all size classes. It is important
to note that Rodda et al. (1999) occurred before multiple frog
introductions (Fig. 1). Our data show lower body condition in
1992–93, which coincides with scarcity of ectothermic prey.
Food availability was previously implicated as a proximate
cause of decreased body condition (Moore et al., 2005; Waye
and Mason, 2008). Lack of food, i.e. starvation, can lead to
low body condition as animals metabolize fat, carbohydrates
and muscle to sustain life (McCue, 2007, 2010). Movement
in search of prey can accelerate these processes (Higginson
and Ruxton, 2015). Experimental removal of rodents on
open plots led to greater BTS movements and increased BTS
activity outside of areas where rodents were removed, indicat-
ing BTS alter food-searching behaviour when prey is scarce
(Christy et al., 2017, but see Rodda et al., 2008). As more
nonnative lizard prey became available by 2003, BTS body
condition increased and was indistinguishable in 2018 when
presumably additional anuran prey was available. Some posit
that larger, endothermic prey were not available to sustain
larger snakes, leading to abundant smaller BTS that fed on
abundant lizards (Rodda et al., 1999). Indeed, in areas where
endothermic prey is available (i.e. urban habitat), BTS tend to
be larger and in better condition (Savidge, 1991; Siers et al.,
2017a). However, our sampling was not conducted in urban
areas, and we observed body condition differences across
years so endothermic prey is less likely to explain better body
conditions in 2003 and 2018. Several other studies investigat-

ing resource availability in snakes find lower body condition
with restricted prey availability (Beaupre, 2008; Sandfoss et
al., 2018). The relationship between food availability and
CORT is more complex.

Glucocorticoids such as CORT are first and foremost
metabolic hormones that mediate glucose availability and
protein catabolism when energy demands change (Jacob and
Oommen, 1992; Jimeno et al., 2018; MacDougall-Shackleton
et al., 2019); these actions may be especially apparent during
starvation (Dallman et al., 1993; Romero et al., 2010). There
is a body of evidence in avian and non-avian reptiles that
baseline CORT is elevated when resources are scarce (Sapol-
sky et al., 2000; Romero et al., 2010; Dickens and Romero,
2013; Sorenson et al., 2017), coinciding with our observation
that scarce resources in 1992–93 relate to increased baseline
CORT. In other colubrid snakes, baseline CORT is increased
in populations with fewer food resources (Palacios et al.,
2012) or after food restriction (Holden et al., 2019). CORT
reactivity is also affected by resource availability (Jessop
et al., 2013). We observed an increased magnitude of 1 h
CORT in 2018 relative to 2003, potentially corresponding to
greater availability of frogs in 2018. It is possible that mild
toxicity of amphibian prey may lead to increased baseline
(Neuman-Lee et al., 2017) and 1 h CORT (Mohammadi et
al., 2017) in 2018; however, we have no evidence of this type
of response in BTS, and given the scarcity of anuran prey
reported in gut contents (Siers, 2015), it is less likely that
many individuals in 2018 had recently consumed frogs. Thus,
resource availability may better explain lower 1 h CORT
in 2003. Dampened acute CORT corresponds with reduced
resources in many avian and non-avian reptiles (see Dunlap
and Wingfield, 1995; Kitaysky et al., 2007; Romero, 2001;
Romero and Wikelski, 2001; Romero et al., 2010), including
other snakes (Sandfoss et al., 2020, but see Neuman-Lee
et al., 2015). The apparent correlations between CORT and
resource availability in BTS deserve experimental attention.

Management pressure

Management of BTS has increased in effort and diversity
of techniques since the initial sampling period in our study
(reviewed in Engeman et al., 2018). Techniques include but
are not limited to trapping, visual searches, barriers and
baited oral toxicants. Much of the intense removal efforts
are implemented in experimentally closed populations (i.e.
no emigration to surrounding environment, snakes in our
study unaffected) or in targeted areas such as military bases,
harbors and airports (e.g. Engeman et al., 1998; Siers et al.,
2018; Nafus et al., 2020). Although less severe, multiple agen-
cies have increased targeted removals on Guam since 2004
(reviewed in Engeman et al., 2018). Removing snakes from the
system could have obvious direct implications for population
density and demography. In other harvested species, removals
affect life history strategy of the survivors, which commonly
lead to maturation at smaller sizes or earlier ages (reviewed
in Kuparinen and Festa-Bianchet, 2017). In BTS, trapping and
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bait methods miss small snakes (Rodda et al., 2007; Boyarski
et al., 2008), which may similarly produce selective pressure
for breeding at smaller sizes (Siers et al., 2017b). Our data may
better reflect ‘indirect’ effects of management efforts, that is,
the physiological effects on individuals that are not captured
or avoid capture (Hollins et al., 2018). Even in game species,
indirect effects of management and harvesting are only very
recently being considered (Kuparinen and Festa-Bianchet,
2017; Hollins et al., 2018). With that in mind, we consider
the possibility of indirect effects on management of BTS in our
data and advocate for its further study in vertebrate invasions.

We postulate that ‘missed’ snakes may feel some effects
of management. After heavy removals in one area, other
individuals may immigrate to that area, as evidenced by high
gene flow across Guam in BTS (Kierepka et al., 2019). On
the other hand, nearby management may affect snakes that
have emigrated to surrounding, less-targeted areas. Given this,
snakes not in immediate management areas may have some
prior experience or exposure to management techniques.
Managers may be thought of as predators in the ecological
context of invasion management. Increased presence or threat
of predators can cause transgenerational behavioural and
physiological changes in prey species (Sheriff et al., 2010;
Sheriff, 2015). In snowshoe hares, faecal CORT was high-
est when threat of predation was also the highest (Sheriff
et al., 2011). We observe the opposite in BTS-lower baseline
plasma CORT in years corresponding to increased man-
agement activities. It is likely that BTS consider humans a
predator, as defensive behaviour is increased in sites where
snakes had previous experience with humans (Spencer et al.,
2015); however, human presence is not constant, even during
management control activities. The hormonal responses to
human presence in BTS are also unknown. Other reptiles have
contrasting CORT responses to human activity or presence
(reviewed in Injaian et al., 2020), so it is difficult to interpret
our results in this context. Clearly, this is an avenue for
further experimental research. Body condition may also be
affected by predation. If snakes pursue more active avoidance
behaviours or are hesitant to feed, they may decrease in body
condition, as seen in snowshoe hares (Sheriff et al., 2011)
or heavily harvested ungulates (Proaktor et al., 2007). We
also observe the opposite in BTS: improved body condition
correlated with increased management efforts and exposure
to humans (i.e. living in urban areas). Exposure to novel
objects in the environment can affect CORT responses in
other animals (Dinces et al., 2014; Baugh et al., 2017). Traps
or toxic bait deployment materials could be considered novel
items to BTS. Traps may additionally influence snakes that are
not captured as they may convey information about captured,
stressed conspecifics via pheromones or other scent (musk)
if not thoroughly sanitized between captures. Unfortunately,
snake responses to novelty are poorly understood (Holding
et al., 2014; Heiken et al., 2016). In rats, exposure to novelty
early in life led to greater magnitude of acute CORT responses
as adults (Dinces et al., 2014). Interestingly, in largemouth
bass, individuals with lower acute CORT response were more

vulnerable to capture (Louison et al., 2017). Another impor-
tant consideration is how increased human development on
Guam influences snake hormonal responses and responses to
novelty. It is possible that our observed greater acute CORT
response in adult snakes in 2018 relative to 2003 corre-
sponds to increased exposure of 2018 snakes to novel objects
as neonates. Further study is needed to seriously evaluate
these and other potential indirect effects of management and
human activity in BTS and other species.

Putting interactive processes in context

The increases in ectothermic prey from 1990s to mid-2000s
coincide with decreases in snake density. These decreases in
density may be reactive responses to previous food scarcity
(2003 from 1992–93), the result of increased management
pressure removing more snakes (from 2003 to 2018) or a
combination of the two. Changes in CORT, body condition
and the relationship between them over the years may thus
be due to increased management pressure, which decreases
effective population size, which increases effective food avail-
ability that is also subsidized by potential increases in invasive
prey, but the interacting processes are not quite so simple. For
example, increased management and the resulting increased
food availability or decreased density may have opposing
effects on CORT and body condition. To disentangle the
effects of each, targeted sampling will be necessary. For exam-
ple, sampling in areas in Southern Guam with longer term
frog abundance versus more recent, smaller frog populations
may elucidate the effect of prey availability on body condition
and CORT expression. Likewise, sampling closed populations
or areas with intense, regular management pressure versus
wild areas not frequented by management agencies may reveal
effects of management pressure on these morphological and
physiological metrics. Finally, sampling of high-density, closed
populations versus low-density, closed populations with equal
management pressure could show how BTS respond phys-
iologically to population density. Immune metrics can be
applied to these questions to grow our understanding of
immune investment in wild ectotherms. All the above sce-
narios may be conducted in conjunction with, or adjacent to,
ongoing management efforts to help advance how physiolog-
ical tools are interpreted in conservation ecology.

Conclusion
We showed that different assay methods can be used to evalu-
ate long-term responses in BTS. Additionally, our data add to
growing literature supporting the use of CORT and body con-
dition for use in interpreting demographic health. Although
intertwined, we find potential relationships between changes
in population density, food availability, management pressure
and physiological and morphological metrics. For BTS, a
species that is regularly sampled for control and research
purposes, at minimum the regular collection of morphology
information and blood samples before, during and after direct
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and indirect management actions would allow the tracking
of physiological and demographic changes simultaneously.
Overall, the field of applied conservation physiology may
be improved by the synchronous study of physiology with
management actions for species of conservation concern such
as the BTS.
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