15 research outputs found
Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil
The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others
Intra and inter-annual structure of zooplankton communities in floodplain lakes: a long-term ecological research study
Water flow management has significantly changed the natural dynamic of floods, which are responsible for the structure and dynamic of aquatic communities in river-floodplain systems. With the aim to elaborate a conceptual framework that describes the main ecological factors associated with zooplankton community structure in the Upper Paraná River, we investigated the mechanisms that regulate the communities structure and their response to inter-annual and hydro-sedimentological variations in the floodplain and the biological factors associated with species abundance in those communities. For this we conducted samplings every six months (potamophase in March and limnophase in September) to characterize intra and inter-annual variations in community structure between 2000 and 2008. The intra-annual differences on the species richness, abundance, Shannon diversity index, and evenness, were conducted using Bayesian procedures to show probabilistic predictions of the data fit to main variation sources. Non-metric multi-dimensional scaling (NMDS), multiresponse permutation procedure (MRPP), and indicator species analysis (IndVal) were run to assess and characterize the seasonality of the community structure. During high water (potamophase), hydrologic connectivity favoured exchange and dispersal of species in some lakes, increasing local diversity; during low water (limnophase), higher local productivity favoured opportunistic taxa, increasing species dominance and decreasing local diversity. Food resources and density of small-size fish were biological factors associated with the seasonal dynamic of the zooplankton community; these factors were dependent on hydrosedimentological phase (potamophase or limnophase). Water levels and limnological modifications related to water flow management have promoted replacement and impoverishment of aquatic biota in affected lakes and have indicated the ecological importance of a natural dynamic flood, which displays regular flood pulses. The conceptual model presented encompassed interactions between diverse environmental variables to more understandable mechanisms of the main sources of community variation.El manejo del régimen de inundación ha cambiado de manera significativa la dinámica natural de las inundaciones, que son responsables de la estructura y dinámica de las comunidades acuáticas en sistemas río-planicie de inundación. En este sentido, investigamos cómo la estructura de las comunidades zooplanctónicas responde a variaciones estacionales e interanuales en los sistemas de llanura de inundación, y los factores biológicos asociados con la abundancia de especies de las comunidades zooplanctonicas. Elaboramos también, un marco conceptual que describe los principales factores ecológicos asociados con la estructura de las comunidades para los sistemas del Alto río Paraná. Para ello se realizaron muestreos cada seis meses (potamophase en marzo y en septiembre limnophase) para caracterizar las variaciones intra e interanuales en la estructura de la comunidad entre 2000 y 2008. Las diferencias estacionales de la riqueza de especies, abundancia, índice de diversidad de Shannon y equitatividad, se llevaron a cabo utilizando procedimientos Bayesianos para mostrar predicciones probabilísticas de los datos ajustados para las principales fuentes variación. Análisis de ordenamiento no-métrico multi-dimensional (NDMS); procedimientos de permutación de respuestas múltiples (MRPP) y análisis de especies indicadoras (IndVal) fueron utilizados para evaluar y clasificar la estacionalidad de la estructura de la comunidad. Durante aguas altas (potamofase), la conectividad hidrológica favoreció el intercambio y dispersión de las especies en algunas lagunas, incrementando la diversidad local; durante aguas bajas (limnofase), la alta productividad local favoreció los táxones oportunistas, incrementando las especies dominante y disminuyendo la diversidad local. La disponibilidad de recursos alimenticios y la densidad de pequeños peces fueron los factores biológicos asociados con la dinámica estacional de la comunidad zooplanctonica; los cuales dependen de la fase hidrosedimentológica (potamofase o limnofase). Modificaciones del régimen hidrológico y limnológico relacionados con el manejo de inundación han promovido el reemplazo y empobrecimiento de la biota acuática, en las lagunas sin conexión afectadas, enfatizando así la importancia ecológica de la dinámica natural de inundaciones, que presenta pulsos regulares de inundación. El modelo conceptual que se presenta abarca desde interacciones entre diversas variables ambientales hasta mecanismos más comprensibles de las principales fuentes de variación de la comunidad. Palabras clave
Daily variation of zooplankton abundance and evenness in the Rosana reservoir, Brazil: biotic and abiotic inferences
The zooplankton community presents stochastic temporal fluctuation and heterogeneous spatial variation determined by the relationships among the organisms and environmental conditions. We predicted that the temporal and spatial zooplankton distribution is heterogeneous and discrete, respectively, and that the daily variation of most abundant species is related to environmental conditions, specifically the availability of resources. Zooplankton samples were collected daily at three sampling stations in a lateral arm of the Rosana Reservoir (SP/PR). The zooplankton did not present significant differences in abundance and evenness among sampling stations, but the temporal variation of these attributes was significant. Abiotic variables and algal resource availability have significantly explained the daily variation of the most abundant species (p<0.001), however, the species distribution makes inferences on biotic relationships between them. Thus, not only the food resource availability is influential on the abundance of principal zooplankton species, but rather a set of factors (abiotic variables and biotic relationships)
The structure of planktonic communities of testate amoebae (Arcellinida and Euglyphida) in three environments of the Upper Paraná River basin, Brazil
Ecological communities are constantly restructuring in the short and long term in response to population dynamics and environmental variables. This study evaluated the structure of arcellinid and euglyphid testate amoebae planktonic communities in three environments of the Upper Paraná River basin, Brazil. We hypothesised that the community structure of testate amoebae is differentially influenced by environmental conditions, mainly in isolated lentic ecosystems, due the effect of the low-water period. In addition, we predicted that the response of testate amoeba communities to environmental changes is also affected by the distinct hydrodynamic characteristics of the environment. Plankton were sampled in the low- and high-water periods, and physical and chemical variables were calculated for each site. In order to evaluate the influence of environmental conditions on the variation in testate amoebae community structure over time, a time-lag analytical approach was used and significance was estimated using a Mantel test. A Kendall test coefficient was used to estimate the maintenance of species abundance on each day when sampling was carried out and for each water body. A redundancy analysis was also performed to assess the responses of testate amoeba communities to environmental change in the three studied environments. Bray–Curtis dissimilarity indices were calculated for the testate amoeba communities and the significance of the differences between communities was estimated using a Mantel test. Seventy-five taxa belonging to six families were identified. Environmental conditions influenced the richness, abundance, and dominance pattern of the testate amoebae communities, and distinct hydrodynamic characteristics of the environments affected the establishment of community structure.</p
Correlates of Zooplankton Beta Diversity in Tropical Lake Systems
<div><p>The changes in species composition between habitat patches (beta diversity) are likely related to a number of factors, including environmental heterogeneity, connectivity, disturbance and productivity. Here, we used data from aquatic environments in five Brazilian regions over two years and two seasons (rainy and dry seasons or high and low water level periods in floodplain lakes) in each year to test hypotheses underlying zooplankton beta diversity variation. The regions present different levels of hydrological connectivity, where three regions present lakes that are permanent and connected with the main river, while the water bodies of the other two regions consist of permanent lakes and temporary ponds, with no hydrological connections between them. We tested for relationships between zooplankton beta diversity and environmental heterogeneity, spatial extent, hydrological connectivity, seasonality, disturbance and productivity. Negative relationships were detected between zooplankton beta diversity and both hydrological connectivity and disturbance (periodic dry-outs). Hydrological connectivity is likely to affect beta diversity by facilitating dispersal between habitats. In addition, the harsh environmental filter imposed by disturbance selected for only a small portion of the species from the regional pool that were able to cope with periodic dry-outs (e.g., those with a high production of resting eggs). In summary, this study suggests that faunal exchange and disturbance play important roles in structuring local zooplankton communities.</p></div
Summary of the linear mixed-effects model of zooplankton beta diversity measured as the mean1-Jaccard distance to group (DistC<sub>Jac</sub>) centroid for connectivity data (connected and isolated permanent lakes from all study regions).
<p>The intercept corresponds to expected beta diversity in connected lakes during the dry season, when environmental heterogeneity and spatial extent are zero. Marginal R<sup>2</sup> represents the variance explained by fixed factors.</p><p>Summary of the linear mixed-effects model of zooplankton beta diversity measured as the mean1-Jaccard distance to group (DistC<sub>Jac</sub>) centroid for connectivity data (connected and isolated permanent lakes from all study regions).</p
Zooplankton beta diversity for each studied region.
<p>(A) Zooplankton beta diversity (as the mean Jaccard distance to group centroid) for each region, sampling time (for each region, the different data points in the X-axis represent the different sampling times) and lake categories (permanent connected, permanent isolated and temporary isolated). (B) Environmental heterogeneity for each region, sampling time and lake categories.</p