491 research outputs found
The introduction of an acute physiological support service for surgical patients is an effective error reduction strategy
AbstractIntroductionAcute surgical patients are particularly vulnerable to human error. The Acute Physiological Support Team (APST) was created with the twin objectives of identifying high-risk acute surgical patients in the general wards and reducing both the incidence of error and impact of error on these patients. A number of error taxonomies were used to understand the causes of human error and a simple risk stratification system was adopted to identify patients who are particularly at risk of error.ResultsDuring the period November 2012–January 2013 a total of 101 surgical patients were cared for by the APST at Edendale Hospital. The average age was forty years. There were 36 females and 65 males. There were 66 general surgical patients and 35 trauma patients. Fifty-six patients were referred on the day of their admission. The average length of stay in the APST was four days. Eleven patients were haemo-dynamically unstable on presentation and twelve were clinically septic. The reasons for referral were sepsis,4 respiratory distress,3 acute kidney injury AKI (38), post-operative monitoring (39), pancreatitis,3 ICU down-referral,7 hypoxia,5 low GCS,1 coagulopathy.1 The mortality rate was 13%. A total of thirty-six patients experienced 56 errors. A total of 143 interventions were initiated by the APST. These included institution or adjustment of intravenous fluids (101), blood transfusion,12 antibiotics,9 the management of neutropenic sepsis,1 central line insertion,3 optimization of oxygen therapy,7 correction of electrolyte abnormality,8 correction of coagulopathy.2ConclusionOur intervention combined current taxonomies of error with a simple risk stratification system and is a variant of the defence in depth strategy of error reduction. We effectively identified and corrected a significant number of human errors in high-risk acute surgical patients. This audit has helped understand the common sources of error in the general surgical wards and will inform on-going error reduction initiatives
Dynamics of tournaments: the soccer case
A random walk-like model is considered to discuss statistical aspects of
tournaments. The model is applied to soccer leagues with emphasis on the
scores. This competitive system was computationally simulated and the results
are compared with empirical data from the English, the German and the Spanish
leagues and showed a good agreement with them. The present approach enabled us
to characterize a diffusion where the scores are not normally distributed,
having a short and asymmetric tail extending towards more positive values. We
argue that this non-Gaussian behavior is related with the difference between
the teams and with the asymmetry of the scores system. In addition, we compared
two tournament systems: the all-play-all and the elimination tournaments.Comment: To appear in EPJ
Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract)
In this paper, a novel computational technique for finite discrete
approximation of continuous dynamical systems suitable for a significant class
of biochemical dynamical systems is introduced. The method is parameterized in
order to affect the imposed level of approximation provided that with
increasing parameter value the approximation converges to the original
continuous system. By employing this approximation technique, we present
algorithms solving the reachability problem for biochemical dynamical systems.
The presented method and algorithms are evaluated on several exemplary
biological models and on a real case study.Comment: In Proceedings CompMod 2011, arXiv:1109.104
Singular Casimir Elements of the Euler Equation and Equilibrium Points
The problem of the nonequivalence of the sets of equilibrium points and
energy-Casimir extremal points, which occurs in the noncanonical Hamiltonian
formulation of equations describing ideal fluid and plasma dynamics, is
addressed in the context of the Euler equation for an incompressible inviscid
fluid. The problem is traced to a Casimir deficit, where Casimir elements
constitute the center of the Lie-Poisson algebra underlying the Hamiltonian
formulation, and this leads to a study of the symplectic operator defining the
Poisson bracket. The kernel of the symplectic operator, for this typical
example of an infinite-dimensional Hamiltonian system for media in terms of
Eulerian variables, is analyzed. For two-dimensional flows, a rigorously
solvable system is formulated. The nonlinearity of the Euler equation makes the
symplectic operator inhomogeneous on phase space (the function space of the
state variable), and it is seen that this creates a singularity where the
nullity of the symplectic operator (the "dimension" of the center) changes.
Singular Casimir elements stemming from this singularity are unearthed using a
generalization of the functional derivative that occurs in the Poisson bracket
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV
We report a measurement of the longitudinal double-spin asymmetry A_LL and
the differential cross section for inclusive Pi0 production at midrapidity in
polarized proton collisions at sqrt(s) = 200 GeV. The cross section was
measured over a transverse momentum range of 1 < p_T < 17 GeV/c and found to be
in good agreement with a next-to-leading order perturbative QCD calculation.
The longitudinal double-spin asymmetry was measured in the range of 3.7 < p_T <
11 GeV/c and excludes a maximal positive gluon polarization in the proton. The
mean transverse momentum fraction of Pi0's in their parent jets was found to be
around 0.7 for electromagnetically triggered events.Comment: 6 pages, 3 figures, submitted to Phys. Rev. D (RC
Longitudinal scaling property of the charge balance function in Au + Au collisions at 200 GeV
We present measurements of the charge balance function, from the charged
particles, for diverse pseudorapidity and transverse momentum ranges in Au + Au
collisions at 200 GeV using the STAR detector at RHIC. We observe that the
balance function is boost-invariant within the pseudorapidity coverage [-1.3,
1.3]. The balance function properly scaled by the width of the observed
pseudorapidity window does not depend on the position or size of the
pseudorapidity window. This scaling property also holds for particles in
different transverse momentum ranges. In addition, we find that the width of
the balance function decreases monotonically with increasing transverse
momentum for all centrality classes.Comment: 6 pages, 3 figure
Measurement of the Bottom contribution to non-photonic electron production in collisions at =200 GeV
The contribution of meson decays to non-photonic electrons, which are
mainly produced by the semi-leptonic decays of heavy flavor mesons, in
collisions at 200 GeV has been measured using azimuthal
correlations between non-photonic electrons and hadrons. The extracted
decay contribution is approximately 50% at a transverse momentum of GeV/. These measurements constrain the nuclear modification factor for
electrons from and meson decays. The result indicates that meson
production in heavy ion collisions is also suppressed at high .Comment: 6 pages, 4 figures, accepted by PR
- …