911 research outputs found

    Global climate evolution during the last deglaciation

    Get PDF
    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO_2 and CH_4 to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation

    Sedimentological Observations from the Tiskilwa Till, Illinois, and Sky Pilot Till, Manitoba

    Get PDF
    We present sedimentological observations from the Tiskilwa Till in northern Illinois, and the Sky Pilot Till in northern Manitoba, that indicate deposition of these tills by subglacial deformation. These generally homogenous tills grade downward into more heterogeneous tills that incorporate underlying sediment into their matrix, indicating entrainment of older sediments by sediment deformation. Deformed sand inclusions within these tills imply deformation of the tills and inclusions prior to deposition. The Tiskilwa Till has relatively high fabric strength throughout its thickness, whereas fabric strength in the Sky Pilot Till generally increases up-section in 2 to 3 m thick increments. Fabric orientations in both tills rotate up-section, possibly due to changes in ice-flow direction associated with the thickening and thinning of ice, and changes in ice-flow divide location. In both the Tiskilwa and Sky Pilot Tills, the change in fabric orientation occurs over intervals of ~1 m, suggesting that the maximum depth of deformation was ≤1 m insofar as any greater depth of deformation would have reoriented till fabric during maximum ice extent and retreat. In the case of the Sky Pilot Till, the up-section increase in macrofabric strength indicates that strain increased up-section. These data suggest that these tills were deposited in a time transgressive manner as strain migrated upwards with the delivery of new till either released from the ice base or advected from up-ice.Les observations sédimentologiques des tills de Tiskilwa, Illinois, et de Sky Pilot, Manitoba, indiquent que ces tills sont issus d’une déformation sous-glaciaire. Ces tills, généralement homogènes, deviennent hétérogènes vers leur base et ils incorporent du matériel sous-jacent dans leur matrice, ce qui indique un déplacement des sédiments plus âgés par déformation. La présence d’inclusions de sable dans ces tills impliquent leur déformation avant leur dépôt. Le till de Tiskilwa présente une matrice très cohérente sur toute son épaisseur tandis que celle du till de Sky Pilot augmente vers le haut tous les 2 ou 3 mètres. La rotation de l’orientation des matrices de ces deux tills est probablement associée aux changements de l’écoulement glaciaire liés à l’épaisseur de la glace et à la migration de la ligne de partage des marges glaciaires. Pour ces tills, le changement d’orientation du matériel se produit sur des intervalles d’environ 1 m, où la profondeur maximale de déformation devrait réorienter le matériel du till durant le maximum glaciaire et le retrait des glaces. Dans le cas du till de Sky Pilot, la section supérieure montre une augmentation dans la force de cohésion du matériel. Ces données indiquent que ces tills se sont déposés de manière diachronique, où la force de tension a migré vers le haut, entraînant le dépôt de matériel basal frais à partir de la base de la glace ou par advection depuis la glace

    Global and regional temperature change over the past 4.5 million years

    Get PDF
    Much of our understanding of Cenozoic climate is based on the record of δ18O measured in benthic foraminifera. However, this measurement reflects a combined signal of global temperature and sea level, thus preventing a clear understanding of the interactions and feedbacks of the climate system in causing global temperature change. Our new reconstruction of temperature change over the past 4.5 million years includes two phases of long-term cooling, with the second phase of accelerated cooling during the Middle Pleistocene Transition (1.5 to 0.9 million years ago) being accompanied by a transition from dominant 41,000-year low-amplitude periodicity to dominant 100,000-year high-amplitude periodicity. Changes in the rates of long-term cooling and variability are consistent with changes in the carbon cycle driven initially by geologic processes, followed by additional changes in the Southern Ocean carbon cycle. </jats:p

    Early Deglaciation in the Tropical Andes

    Full text link

    Assessing population exposure to coastal flooding due to sea level rise

    Get PDF
    The exposure of populations to sea-level rise (SLR) is a leading indicator assessing the impact of future climate change on coastal regions. SLR exposes coastal populations to a spectrum of impacts with broad spatial and temporal heterogeneity, but exposure assessments often narrowly define the spatial zone of flooding. Here we show how choice of zone results in differential exposure estimates across space and time. Further, we apply a spatio-temporal flood-modeling approach that integrates across these spatial zones to assess the annual probability of population exposure. We apply our model to the coastal United States to demonstrate a more robust assessment of population exposure to flooding from SLR in any given year. Our results suggest that more explicit decisions regarding spatial zone (and associated temporal implication) will improve adaptation planning and policies by indicating the relative chance and magnitude of coastal populations to be affected by future SLR.PRIFPRI3; ISIDSG
    • …
    corecore