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Assessing population exposure to coastal flooding
due to sea level rise
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The exposure of populations to sea-level rise (SLR) is a leading indicator assessing the impact
of future climate change on coastal regions. SLR exposes coastal populations to a spectrum of
impacts with broad spatial and temporal heterogeneity, but exposure assessments often
narrowly define the spatial zone of flooding. Here we show how choice of zone results in
differential exposure estimates across space and time. Further, we apply a spatio-temporal
flood-modeling approach that integrates across these spatial zones to assess the annual
probability of population exposure. We apply our model to the coastal United States to
demonstrate a more robust assessment of population exposure to flooding from SLR in any
given year. Our results suggest that more explicit decisions regarding spatial zone (and
associated temporal implication) will improve adaptation planning and policies by indicating
the relative chance and magnitude of coastal populations to be affected by future SLR.
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ea-level rise (SLR) accompanying climate change will cause

significant and costly impacts in the 21st century and

beyond. Avoiding adverse consequences depends on our
ability to undertake accurate assessments of the populations
already affected, and those projected to be affected, to inform
adaptation planning and the ability to adapt to such
consequences!. Research has long sought to identify the impact of
SLR on coastal areas?~4, with an increasing focus on estimating
exposed populations and associated assets>>°, The human
population is concentrated in the low-elevation coastal zone
(LECZ; those <10 m above sea level) with more than 600 million
people living in the LECZ globally’, and despite the increasing
rate of SLR related flooding®, the global LECZ population is
growing: more than 1 billion are forecast to live in the coastal
zone by 2060°.

Scientific assessments estimating the populations affected by
SLR date back at least four decades and are relatively common in
the scientific literature. Intense interest in this topic is due to the
magnitude and severity of SLR flooding as a climate impact, the
clear potential implications for human migration®, the growing
size of global coastal populations®, the relative simplicity of
producing estimates’, and the increasing availability of both
geophysical and population data products from local to global
scales’. However, the magnitude of the population estimated to
be affected ranges widely across studies. At the global level, the
population estimated to be affected by SLR ranges from a low of
88 million!? to a high of 1.4 billion>. These wide-ranging esti-
mates can be attributed to several considerations, including: (1)
differing spatial zones of “at-risk” that influence estimates of how
many people will be affected by SLR, and (2) differing temporal
horizons implied by any given spatial zone that affect estimates of
when increased flooding and associated impacts due to SLR will
occur. A third major consideration is the deployment of different
datasets and methods to calculate exposure. Examining the con-
tribution of different datasets and methods to wide-ranging
estimates of SLR exposure is beyond the scope of this paper. For
simplicity, we use the term “spatial zone” throughout the paper to
describe inland areas relative to the coastline. However, we
recognize that in some cases for these zones, we are discussing
areas that are representative of “spatio-temporal zones” such as
the 100-year flood plain, which while explicitly spatial, is
dependent upon the temporal notion of a 1% chance of flooding
in any given year.

The modeling choices around spatial zone of population
affected by SLR imply a temporal horizon for when impacts will
unfold. These temporal horizons can be forecast from as short as
100 years!! to as long as 2000 years or longer®!?, pushing SLR
impacts deep into the future. However, permanent inundation is
not the most immediate impact of SLR. Regular daily to annual
tidal flooding (e.g., nuisance flooding) events are likely to be the
most disruptive to life in the near term8, and related impacts are
already occurring in many parts of the world (e.g. coastal
erosion!3, coastal flooding!4, and saltwater intrusion!?). Yet each
individual spatial zone overlooks the spatio-temporal continuity
of SLR impacts on a coastal landscape. Such spatio-temporal
differences in assessments of populations affected highlight some
of the limitations of singular, or limited, spatial zones for adap-
tation planning.

In a systematic review of research assessing populations
affected by SLR, we identify 46 studies that meet our search
criteria (See Supplementary Material). Each of these studies
assessed populations affected by SLR using varied spatial zones of
exposure. The spatial zone of SLR exposure assessed in these
studies ranged from mean sea level (narrowest zone) to the LECZ
(broadest zone). Twenty studies (43%) used more than one spatial
zone, nine (20%) used more than two, and four (9%) used three

or more. The most common three, from narrowest to broadest
spatial zone, assessed populations affected as follows: (i) complete
inundation or submergence under the future high-tide line
(n=120), (ii) extreme water levels such as storm surge via the 100-
year floodplain (n=17), and (iii) the LECZ (n=11) (Supple-
mentary Table 1). Of the seven spatial zones used in at least three
studies, 61% (n = 28) of the studies used at least one of the three
common zones, 13% used two, and only one study'® used all
three. These are the same three common spatial zones identified
in previous studies®!”. McMichael et al.l7 referred to these three
zones as Specified Levels of SLR, Coastal Floodplains, and the
LECZ and we adopt those labels here.

Recurrent tidal flooding or flooding on an annual basis and
flooding for a specified return level (Coastal Floodplains) is the
exposure category where we expect impacts that are most
immediate and severe!3-20. Perigean spring tide events cause
regularly recurring water levels well above high tide, and in many
coastal areas these cause significant flooding, sometimes referred
to as nuisance flooding or recurrent tidal flooding®, particularly
when these tidal events are enhanced by significant onshore
winds from tropical cyclones or storms.

Eventually, recurrent tidal flooding gives way to permanent
inundation and submergence of coastal areas under future high
tides. The future high-tide line (Specified Levels of SLR) is the
narrowest delineation of exposure to SLR (i.e. transition from
land to ocean), and commonly implies societal impacts that
include permanent loss of settled areas, migration, and commu-
nity relocation®. These areas are threatened by inundation and
will ultimately be the most adversely affected locations, but
societal losses will occur prior to permanent inundation and are
dependent on adaptive measures that may be undertaken in
advance. It is important to note that this strict delineation
eschews other hazards associated with SLR.

Areas located beyond the Coastal Floodplains and within the
upper bounds of the LECZ broaden populations exposed to
coastal flooding and especially its extended impacts while carry-
ing much less of a chance of flooding, but still include associated
SLR hazards (such as soil salinization)>2!. Simply residing within
the LECZ does not guarantee direct exposure to a SLR hazard
such as a storm surge, but it does carry increased probability of
exposure to the side effects of an extreme event through extended
impacts on, for example, livelihood opportunities. For example,
some populations residing within the 100-year floodplain may
experience recurrent tidal flooding, permanent inundation, storm
surges, and saltwater intrusion in coming decades,®22-24 while
those beyond it are less likely to experience such effects. Broader
zones such as the LECZ render any coastal area as “exposed” to
SLR in nearly any time period, which makes it difficult to
determine exactly who is exposed to SLR-related effects and when
they are exposed. For our study, however, we do not assess these
extended impacts, rather we specifically highlight the estimated
populations that could be indirectly affected by flooding events
triggering other impacts in the LECZ.

There are three main advantages to examining SLR exposure
assessments across the three most common spatial zones. First, by
accounting for the probability of flooding at locations between the
LECZ to the mean higher high water (MHHW) mark into a single
analytical framework, we better describe how possible differential
impacts vary across space. Different populations within the
coastal zone have differential exposure to flooding, allowing for
more nuanced discussions of what it means to be “exposed”
to SLR.

Second, each individual approach implies varying temporal
windows. Specified levels of SLR assume SLR exposure only at the
moment when areas are permanently submerged. Conversely, the
LECZ represents the most inclusive estimate of exposure to SLR

2 | (2021)12:6900 | https://doi.org/10.1038/s41467-021-27260-1| www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

hazards potentially over millennia with high emissions and future
sea level under high emissions will far exceed the LECZ if it is
kept fixed relative to present sea levellZ, Between these two
extremes lie Coastal Floodplains with a gradient of exposure to
multiple hazards associated with the slow, continual rise in water
levels.

Third, analyzing the most common approaches provides a
framework for examining the entire range of population expo-
sures to SLR impacts. Each spatial zone when applied often
assumes homogeneity of impacts by identifying populations
exposed based on their presence within each designated zone:
people are either inside or outside the LECZ; inside or outside the
100-year floodplain; above or below specified levels of SLR. This
equality of exposure within each chosen spatial zone ignores the
variability within the actual zone itself. Those projected to live
under the future high-tide line are exposed to virtually all SLR-
associated hazards: soil salinization, recurrent tidal flooding,
storm surge, livelihood impacts, shoreline erosion, etc. In con-
trast, those who live at higher elevations within coastal commu-
nities might only be exposed to storm surge and indirect
livelihood impacts. Allowing for variation of exposure, as we have
done here, permits an examination of multiple scenarios that
might unfold along the spectrum of flood exposure in the
coastal zone.

While we still use the above approaches and recognize their
value in what population exposure assessments indicates related
to the extended hazards beyond flooding, taken individually, no
one approach to characterizing spatial zone is likely to accurately
represent the heterogeneity of hazards associated with SLR nor
quantify the spatial zone or timing of exposure to flooding. One
approach to this problem is the EAE, a unifying spatio-temporal
metric that characterizes exposure across all spatial zones using a
finite time period (one year) for planning decisions. Unlike other
approaches, the EAE indicates the population exposed to annual
flooding by summing the range of annual exposure probabilities
over space under any given Representative Concentration Path-
way (RCP), an exposure profile that changes over time.

Furthermore, most previous assessments focus on assessing the
populations exposed specifically to flooding disregard the annual
probability of population exposure to flooding above the high-
tide line spanning from the relatively frequent nuisance events
(such as a spring/king tide) to 100-year floodplains and beyond.
While some studies of SLR impacts have examined expected
annual damages (e.g.,'1'*>2%), analysis of the expected annual
exposure (EAE) of populations to flooding is relatively new?”-29.
EAE allows for integrating across the most common spatial zones
into a single, continuous, model of populations annually exposed
to flooding due to SLR from the high-tide line to the 10,000-year
floodplain. Few assessments of EAE, however, apply projected
estimates of future populations, which could serve as indicators of
future impacts. Thus, we combine the EAE model with sub-
county population projections in the United States to characterize
SLR hazards between 2000 and 2100 under three of the IPCC’s
Representative Concentration Pathways (RCP 2.6, 4.5, and 8.5)
and all five Shared Socioeconomic Pathways.

In this work, based on our own review and previous work>!7,
we analyze population exposure for the three most common
spatial zones from the high-tide line to the LECZ. We show how
this approach allows for better inter-model comparisons between
estimates and, crucially, clarifies their differential exposure esti-
mates related to SLR. Furthermore, we examine the EAE for the
same areas and suggest that it benefits adaptation planning by
showing the annual increase in populations likely to be directly
affected by annual flooding events representing the leading edge
of SLR impacts. Although adaptation will occur in the future, we
do not account for adaptation measures in this analysis, instead

interpreting potential future population exposure as an indicator
of potential impacts. We emphasize that the EAE is not a
replacement for the others, which have their own merits, but that
it instead standardizes the broad coastal zone range into an all-
inclusive spatial region centered on annual flood exposure; a
metric that we suggest indicates the rate of change in populations
exposed to annual flooding in a manner more easily interpreted
for local level adaptation planning.

Results
Overall Results. We find that in the year 2000, the expected
number of people in the United States exposed to an annual flood
event is just over 600 K people, 150 K people lived below the high-
tide line, and 2.4 M people lived in the 100-year flood plain
(Fig. 1). The combination of coastal population growth and SLR
between 2000 and 2020 has already increased the EAE of the US
coastal population by 60% (610K to 980 K), increased the US
coastal population living below the high-tide line by 60% (150 K
to 240 K), and increased the US coastal population living in the
100-year floodplain by 45% (2.4 M to 3.5 M), despite just a 25%
growth in the entire coastal population over the same period.
As the century progresses, SLR places the US coastal
population at increasing chance of exposure to flooding (Fig. 1
and Table 1). Under the SSP2 and RCP 4.5 emission scenarios
between 2020 and 2100, we project the EAE to increase 325% to
4.1 M people (2.3-6.4 M); we project the US coastal population
below the high-tide line to increase more than 435% to 1.2
million people (0.3-5.1M); and we project the US coastal
population living in the 100-year flood plain to increase 160%
to 9.0 million people (3.4 -22.3 M). Lower estimates use SSP3 and
the 5t percentile projection in RCP 4.5 while upper estimates use
SSP5 and the 95th percentile projection from RCP 4.5 unless
otherwise noted. At the same time, we project the population in
the 406 coastal counties to increase by just over 40%
(133-190 M). Importantly, this indicates that exposure to coastal
flood hazards outpaces any increased exposure due to coastal
population growth.

Uneven exposure. Exposure to SLR unfolds unevenly across the
US (Fig. 2). In the year 2000, just two counties had over 100 K
people in the 100-year floodplain. However, by 2100 and
assuming no adaptation, we project nine counties with 100K
people annually exposed to flooding, and 13 counties with 100 K
in the 100-year floodplain. In every single county and spatial
zone, population exposure increases faster than population
growth.

SLR Metrics Comparison. For any particular county, it is the
combination of the three spatial zones (MHHW, 100-year
Floodplain, and LECZ) together that capture the breadth of
SLR impacts. Counties with similar exposure profiles along one
metric (e.g, MHHW) may have vastly different exposure profiles
along the other metrics. For example, despite having 100% of
their populations in the LECZ, Currituck County, NC and
Orange County, TX exhibit markedly different total exposure
profiles. Figure 3 shows selected county pairs with one or more
similar exposure metrics. Even if three of the four exposure
metrics are similar, a fourth metric could still be quite different
(e.g., McIntosh County, GA compared to Franklin County, FL).

Discussion

The three most common spatial zones used to characterize the
populations affected by SLR impacts have merits depending on
data availability, temporal window analyzed, and amount of
anticipated SLR. However, an exposure assessment using only one
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Fig. 1 Projections of sea level rise flooding exposure under Representative Concentration Pathway 4.5 and all five Shared Socioeconomic Pathways
(SSPs) for 2000 to 2100. Uncertainty reflects the 95t percentile prediction interval. Each spatial zone is not mutually exclusive, but cumulative. 9.2
million people in the Infrequent Flooding Effects zone under SSP1 is inclusive of those in the two preceding zones.

Specified level of SLR Coastal Floodplains

Table 1 Projected populations affected in all 406 coastal counties exposed across four spatio-temporal zones between 2000 and
2100 under Shared Socioeconomic Pathway 2 (SSP) and Representative Concentration Pathway 4.5 (RCP) in millions.

Year High-Tide Line EAE 100-year Flood Plain LECZ Total

2000 0.5 0.61 2.39 29.00 107.15

2020 0.23 (0.2-0.27) 0.97 3.41 (3.11-3.81) 39.89 (38.92-40.89) 133.61 (130.84-136.47)
2050 0.46 (0.28-0.82) 1.78 5.32 (3.75-7.58) 52.32 (43.24-62.3) 165.95 (138.18-195.85)
2070 0.74 (0.31-1.78) 2.63 6.94 (3.84-11.88) 58.79 (42-78.95) 181.9 (131.42-240.91)
2100 1.23 (0.31-5.09) 413 8.95 (3.42-22.26) 63.36 (35.59-100.07) 190.07 (108.8-293.77)

Uncertainty intervals in parentheses relate to SSP3, 5th percentile and SSP5, 95th percentile. Total refers to the total population in all 406 coastal counties. Note that each spatial zone and related class
are cumulative, not mutually exclusive. For example, the Low-Elevation Coastal Zone (LECZ) estimate encompasses all other spatial zones.

or two of these zones will fail to capture important heterogeneity
in SLR exposure and could lead to misguided decision making.
We suggest that the lack of consistency across studies and the
imprecision of language related to flooding effects may relay a
confusing and unclear message to the adaptation planning and
policy-making community. For example, MHHW implies that
populations below specified levels of SLR will experience immi-
nent property loss and daily flooding. Those inhabiting the
Coastal Floodplains zone will experience increasing risk of losses
from nuisance flooding, storm surge, saltwater intrusion, soil
salinization, etc. (see® for review). Populations in the LECZ can
prepare for a broader set of socio-economic impacts to livelihoods
due to the tangential effects of flooding extending beyond the
water line over a large geographic area. For example, extended
effects of flooding might include increasing costs of maintaining
vulnerable infrastructure, job losses due to declining coastal
industries and/or populations®?, the extended effects of coastal

property devaluation3!, or climate gentrification32. Our more
holistic approach allows for reimagining adaptation planning
needs along a continuum of impacts. It is not just who will be
affected, but when, and why they will be affected that must be
accounted for in adaptation planning scenarios.

Our results indicate that geographic regions that have similar
population exposure estimates under one or multiple spatial
zones can be different under another zone—sometimes vastly
different (Fig. 3). A key insight from our results is a more com-
prehensive picture for decision-makers who may not otherwise
realize which zone in their jurisdiction has the greatest propor-
tional change projected for the population affected by flooding
and/or non-flooding related events. Such a misplaced judgement
could have significant long-term ramifications for local popula-
tions as adaptation strategies may be misguided. For example,
Glynn County, GA and Pasquotank County, NC have similar
populations exposed to permanent inundation under specified
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a

Fig. 2 Projected populations Inundated under the Mean Higher High Water, Expected Annual Flood, and in the 100-year Flood Plain under Shared
Socioeconomic Pathway 2 (SSP) and Representative Concentration Pathway 4.5 (RCP). a shows the numeric distribution in 2100 and (b) shows the
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Fig. 3 The percentage of the projected 2100 population under Shared Socioeconomic Pathway 2 (SSP) and Representative Concentration Pathway 4.5
(RCP) under the four spatial-temporal zones representative of sea-level rise impacts. Here we compare counties with similar exposures under different
spatial zones to show similarity in one zone does not translate to similar exposure under a different spatial zone. MHHW is the Mean Higher High Water,
EAE is the expected annual exposure, RL100 is the 100-year Floodplain, and LECZ is the Low-Elevation Coastal Zone.
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levels of SLR, and therefore may have similar short-term adap-
tation responses for those expecting near-term losses (see Fig. 3).
However, over the coming century, Pasquotank County, NC has
double the population who can expect annual flooding (via EAE)
and double who will live in the 100-year floodplain. This suggests
that compared to Glynn County, GA, decision-makers in Pas-
quotank County, NC will need to prioritize long-term adaptation
planning and financing, with an eye toward impacts associated
with floodplain management over permanent inundation. For
federal and state agencies, this type of high-level comparison
could inform allocation of national adaptation funding to miti-
gate the most likely types of impacts aligned with predictions of a
region’s largest population indicated to be affected. At the local
level, it offers decision-makers who have limited resources to
allocate toward mitigating impacts the critical details they need to
inform tradeoffs in the adaptation planning process, such as the
magnitude of populations to be affected, and when, how, and why
they will be affected.

Moreover, none of the above spatial zones gives an estimate for
the population that will be directly exposed to flooding annually,
a useful statistic for planning. The EAE approach’s estimate of
annual exposure from the 1-year to 10000-year flood plains
provides decision-makers with this estimate of the population
predicted to be directly affected by a flood event in any given year.
Alongside estimates produced from the three most common
spatial zones, the EAE allows for both a more nuanced under-
standing of the exposed population as well as a comparison with
other previously published estimates that use the high-tide line,
100-year flood plain, or LECZ in their analysis.

How scientists—and crucially policymakers and planners on
the frontlines—conceptualize population exposure to SLR will
inform adaptation strategies for mitigating the impacts of SLR.
Popular adaptation strategies for SLR include protection,
accommodation, and retreat. Typical responses include shoreline
armoring, elevating structures, and relocating buildings further
from the encroaching shoreline, respectively. Aside from the
equity issues of redistributing vulnerability or prioritizing adap-
tation of privileged populations near the shoreline3334, typical
adaptation strategies ignore the significant implications to
populations and infrastructure located beyond the 100-year
floodplain, who will nonetheless experience increasing flooding
effects over time. Our study highlights the narrowness of popular
spatial zones when used alone, but at the same time highlights
their conceptual strengths when paired with each other for
adaptation planning.

We come to three primary conclusions based on our analysis.
Out of our review of 46 articles, scientists studying SLR routinely
employ one (n =26) or two (n =12) spatial zones. As we show,
restricting a SLR assessment to so few spatial zones overlooks the
variation of estimated population exposure across zones, and
crucially, does not identify the zones that are experiencing the
most rapid change in numbers due to SLR. We suggest that sci-
entists should utilize multiple zones to better quantify SLR
impacts for adaptation planning, or at the least be more explicit
with their choice of zone and its associated implications. Second,
SLR increases anticipated impacts in coastal areas far faster than
population growth in coastal areas. Third, using the EAE we show
that nearly 1 million coastal residents in the US are presently
exposed to an annual flood event. These are SLR impacts pre-
sently occurring rather than in the year 2100. Using EAE helps
illuminate the contemporary impacts of SLR and its projected
annual rate of change, underscoring the importance of immediate
adaptation and mitigation needs but also where future efforts
could focus on mitigating direct flooding impacts.

While we treat populations as homogeneous groups in our
analysis, we recognize that successfully adapting to SLR will

require a suite of adaptation planning responses that respond to
the range of social and environmental variability within and
across coastal systems. Adaptation planning must attend to the
ways that social difference affects adaptive capacity under similar
exposure levels33-37, Achieving equity in adaptation planning38-3
requires tackling social difference, specifically how differential
exposure affects different social groups differently. Moreover,
holistic approaches to adaptation planning must also account for
the varied range of SLR hazards beyond flooding and the con-
sequent ramifications for socially differentiated populations.
Future research might examine social heterogeneity of popula-
tions across the most commonly used spatial zones to better
capture possible concerns with justice and equity in adaptation
planning.

Methods

Expected annual exposure. To demonstrate the effect of spatial zone choice on
estimates of populations exposed as an indicator of flooding impacts to SLR for
coastal communities, we combined two primary models: a small-area demographic
projection model and a flood risk probability model.

Small-area demographic projection model. Following?, we produced a set of
small-area demographic projections using a proportional fitting algorithm to
produce spatiotemporally consistent Census Block Groups (CBGs) for the period
1940-2010 and employed a mixed, linear/exponential projection for the period
2010-2100. We included only CBGS (n = 81,815) located in counties (n = 406)
expected to experience any probability of flooding.

We produce these projections using the ‘Year Structure Built’ question, group
quarters count (GQ), and persons-per household (PPHU) from the 2013-2018
Census Bureau’s American Community Survey and the count of housing units at
the county-level from historic censuses. Following*!, the population in time ¢ in
county i in CBG j is given as Py; = H * PPHU + GQ.

- cr _
We calculate H in the period 1940-2010 using H; = m *Z;':II%QHZP

where C}' is the count of housing units from the historic census in the set of time
periods v € {1940, 1950, ...,2010} in county j and H;'j[ refers to the estimate of
housing units in time ¢ from the American Community Survey for block group 7 in
county j. For example, to estimate the number of housing units in block group I in
county j for the year 1960, the number counted in the 1960 census (C}*®) is
divided by the number of HUs in county j as estimated in the ACS for the period
1939-1959 (Z}zslng}%O) and multiplied by the number of HUs for each block

group for the same period (3} 9:0H 70,

We project H in the time periods 2020-2100 using Hj* = (a+pz) +[H' —
(& + Bt)] for any CBGs experiencing population growth and Hj"* = ¢f % 2% +
[H — (e** tﬂ)] for CBGs experiencing population decline. We subset our
projections for the time periods 2000-2100.

We then control our projections to the Shared Socioeconomic Pathways
(SSPs)*243, Out of sample validations suggest reasonably good fit for this
approach?42, Controlling our projections to the SSPs allows a near direct
translation of our small-area results to national-level SSPs and other nation-level
SLR assessments.

Digital elevation model. To classify exposure categories, we employed airborne
lidar-derived digital elevation models (DEMs) distributed by NOAA*4 supple-
mented with the USGS Northern Gulf of Mexico Topobathymetric DEM#° in
Louisiana and the USGS National Elevation Dataset*® in the small fraction of land
not covered by the other sources. These elevation data are vertically referenced to
NAVD88 and converted to the MHHW datum using NOAA’s VDatum grid
(version 2.3.5)#7. Following a bathtub model, we assessed exposed land area using a
given water height against the elevation model to generate binary inundation
surfaces. The DEM data are high-resolution, high-accuracy, LIDAR-derived digital
terrain (bare-earth) models with the lowest uncertainty associated with estimates of
flood exposure!1:48:49,

In past literature2®50->1, it is common to use connected components analysis on
binary inundation surfaces to enforce hydrological connectivity to the ocean. While
this approach works with a small number of elevation thresholds, it becomes
computationally intractable when assessing tens of thousands of SLR scenarios
(combinations of years + emissions scenarios + Monte Carlo simulations), as is
done in this work. Instead, we follow the framework described in>? to directly
refine the DEMS. First, we generated inundation surfaces from 0-10 m above
MHHW, at 0.25 m increments, denoting the 7’th such height in this sequence by h;,
and denoting each such binary surface as ThresholdWaterSurface;(lat, lon). For
each pixel in the DEM below 10 m, we noted the minimum value of i for which
ThresholdWaterSurface;(lat, lon) is 1 (i.e., where its elevation is below k;), which
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we stored in a new index surface ThresholdIndexSurface(lat,lon). We then
incorporated levee data from the Mid-term Levee Inventory (FEMA/USACE,
acquired September 2013) and used connected components analysis to remove
isolated regions within each inundation surface, thus generating fully connected
binary masks ConnectedWaterSurface;(lat,lon). As before, for each pixel in the
DEM below 10 m, we found the lowest value of i for which
ConnectedWaterSurface;(lat, lon), which we again stored in an index surface
ConnectedIndexSurface(lat,lon).

We assumed that pixels where ThresholdIndexSurface(lat,lon)=
ConnectedIndexSurface (lat,lon) are not isolated, and therefore their elevations in
the refined DEM are unchanged. However, locations where ThresholdIndexSurface
(latlon) < ConnectedIndexSurface’(lat,lon) were isolated. To ensure connectivity
when thresholding against new water surfaces, we adjusted such pixels’ elevations

to equal hConnectedIndexSurface (lat7 101’1).

Sea level rise projections and flood event probability surfaces. To produce an
internally consistent model of flooding, given every pixel in the adjusted DEM, and
any SLR projection, we calculated the annual probability that at least one nearby
extreme flood event would exceed each pixels” elevation. Here we used the prob-
abilistic SLR projections published previously?, which incorporate local non-
climatic factors such as isostatic adjustment and human-caused land subsidence,
and are closely aligned with recent IPCC findings®*>°.

We use historical storm surge records at individual tide stations to estimate
their return level curves, and apply them to all pixels between the tide stations
using a bathtub model. Unlike studies that perform hydrodynamic simulations on
synthetic storms (e.g., FEMA’s base flood elevation maps), these curves do not
consider factors such as local topography, rainfall, or waves. While the station-
distance sensitivity analysis performed in28 suggests that the distances between tide
stations used in this work are sufficiently close to assess EAE in the US, exposure
estimates at the <1% probability threshold may be particularly sensitive to these
factors.

We specified our model following previous approaches?22352:56 which hold
storm surge constant, fitting the parameters of a generalized Pareto distribution
(GPD) to historical heights and frequencies of extreme coastal flood events at
NOAA tide stations along the US coastline with at least 30 years of hourly records
through 2013. This specification allows us to estimate P(H = E|Y = 2000), the
annual probability of the maximum water height, H, exceeding elevation, E, in the
year 2000 (the baseline year, where SLR=0). We expanded a framework described
previously?8°2 to estimate total per-pixel annual probability of exceedance of any
water height in any year, unconditional to SLR sensitivity to emissions. Published
SLR projections® are provided as a set of probabilistic distributions, each with
10,000 Monte Carlo samples of SLR for each tide-gauge station and for each year.
Below we denote each sample as the function SLR;(y) for j € [1, ... ,10000]. From
the law of total probability, we can estimate the annual probability of the maximum
water height, H, exceeds elevation E in year Y from

10,000

> P((H + SLR;(y)) = E|Y = 2000) )

PHZEY =)~ 15500 &

We computed this function under each emissions pathway (RCPs 2.6, 4.5, and
8.5) for each decade (2000-2100), for elevations between 0 and 10 m at 0.1 m
increments. We stored these probabilities in lookup tables for efficient queries.

For every pixel in the DEM with elevation E(lat,lon), we determined its closest
NOAA tide-gauge station and used the relevant lookup tables to estimate its annual
water height exceedance probability for every SLR projection listed above. We
stored the results in a large raster database, producing probability surfaces
P(H = E(lat,lon)|Y = y) for all three emissions scenarios and decades along the
entire US coastline.

Recent studies suggest that the bathtub model employed here likely
overestimates exposure, as it does not incorporate wave attenuation nor the time it
takes for water to reach their full extent®”>>. Given the high spatial resolution and
wide distributions of water heights used in our EAE analysis, it is not yet
computationally feasible to employ a hydrodynamic model to refine these results.

Exposure computation. To assess population exposure within a US Census Block
Group under any water height (including all exposure approaches described above,
namely, MHHW, LECZ, as well as 100-year storm surge adjusted for SLR), we
generated a connected inundation surface. For the MHHW and LECZ layers, we
simply thresholded the adjusted DEM to find pixels below SLR(y) and for
(104-SLR(y)), respectively. For the 100-year storm layer, we thresholded the
probability surface to find pixels where P(H >E Y = y) <0.01. For each block
group, we counted the percentage of its pixels on dry land (as defined by the
National Wetland Inventory®) covered by the inundation surface, and multiplied
by its total population, as predicted by each SSP. To compute expected annual
exposure (EAE), defined as the expected number of people on land below the
maximum local storm surge height in a given year28, we multiplied the value of
each pixel within the probability surface P(H = E(lat, lon)|Y = y) by the block
group’s (per-pixel) population density and computed the sum.

Data availability

The data resulting from this study are deposited at https://doi.org/10.5281/
zen0do.5562904%. The underlying data that support the findings of this study are
available from Climate Central but restrictions apply to the availability of these data,
which were used under license for the current study, and so are not publicly available.
Data are however available from the authors upon reasonable request and with
permission of Climate Central.

Code availability
Code to reproduce our analysis is available at https://doi.org/10.5281/zenodo.5562904%0.
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