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Freshwater (FW) forcing is widely identified as the dominant mechanism causing 27 

reductions of the Atlantic Meridional Overturning Circulation (AMOC), a climate tipping 28 

point that led to past abrupt millennial-scale climate changes. However, the AMOC 29 

response to FW forcing has not been rigorously assessed due to the lack of long-term 30 

AMOC observations and uncertainties of sea-level rise and ice-sheet melt needed to infer 31 

past FW forcing. Here we show a muted AMOC response to FW forcing – ~50-m sea-level 32 

rise from the final deglaciation of Northern Hemisphere ice sheets – in the early-to-middle 33 

Holocene ~11,700-6,000 years ago. Including this muted AMOC response in a transient 34 

simulation of the Holocene with an ocean-atmosphere climate model improves agreement 35 

between simulated and proxy temperatures of the past 21,000 years. This demonstrates 36 

that the AMOC may not be as sensitive to FW fluxes and Arctic freshening as is currently 37 

projected for the end of the 21
st
 century.  38 
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Pre-industrial climate evolution of the past 21,000 years indicates that global climate 39 

change was paced by Earth’s orbital variations and driven mainly by abrupt changes in the 40 

Atlantic Meridional Overturning Circulation (AMOC)
1-3

 and more-gradual changes in 41 

atmospheric CO2
4,5

. A future disruption of the AMOC
6
 could lead to drying of the Amazon 42 

rainforest, disruption of the Asian monsoon
7
, rapid sea-level rise on the northeast coast of the 43 

United States
8
, and widespread cessation of crop production in Europe

9
. Indirect assessments of 44 

AMOC trends from historical records are inconclusive, with an estimated 15% weakening since 45 

the mid-twentieth century based on sea surface temperature (SST) observations
10

 and no change 46 

in the AMOC state since 1990s based on hydrographic data
11

. Continuous measurements of the 47 

AMOC started in 2004 with the Rapid Climate Change-Meridional Overturning Circulation and 48 

Heatflux Array (RAPID) program at 26.5ºN, which show that the AMOC weakened between 49 

2004 and 2012 with a recovery since 2012
12

. Future projections of the AMOC with climate 50 

model simulations under high emission scenarios suggest a best estimate of 34-45% weakening 51 

of the AMOC during the 21
st
 century

13,14
 with surface warming and increased freshwater (FW) 52 

fluxes to the Arctic and North Atlantic Oceans from runoff and precipitation as well as melting 53 

of Arctic sea ice and the Greenland ice sheet
15-17

. However, it remains unclear whether the 54 

simulated AMOC reduction from global warming is more responsive to changes in surface heat 55 

fluxes or FW flux
15

 since surface heat flux induces both surface warming and the melting of the 56 

Arctic sea ice with liquid FW exports to the North Atlantic Ocean
16

, while FW-forcing-only 57 

experiments show that an enhanced hydrological cycle
18

 and modest increases in FW fluxes 58 

projected from Greenland ice-sheet melting
13,17

 can still weaken the AMOC.  59 

While theoretical understanding of the AMOC response to FW forcing is reasonably well 60 

established
19

, several issues regarding model design and implementation suggest that further 61 
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evaluation of this relationship is warranted. For example, a recent study based on hydrographic 62 

data suggests a much more stable AMOC than previously thought due to a higher decoupling 63 

between the AMOC and ocean interior property fields
11

. Conversely, another study argues that 64 

climate models overestimate AMOC stability due to incorrect net-FW transport in the Atlantic 65 

Ocean
20

, and that an AMOC collapse (~67% reduction) in response to global warming may 66 

occur by 2300 after correcting these biases with flux adjustments in the model
21

, with the caveat 67 

that a model that correctly simulates surface density does not necessarily correctly simulate 68 

stability
22

. Another issue is the application of FW forcing to regions of deep water formation
23

. 69 

This includes concerns of correctly producing FW export from the Arctic to the North Atlantic 70 

Ocean through boundary currents in low-resolution ocean models
24

 as well as the time scale and 71 

rate of FW forcing that affect the accumulated FW forcing to regions of deep water 72 

formation
25,26

, but previous eddy-permitting ocean simulations (1/6º resolution) with realistic 73 

boundary currents show that AMOC reduces by ~30% with 1-year FW forcing from the Arctic
24

. 74 

Further issues include whether climate models form deep water in the correct region
27

 and 75 

properly export FW from the subpolar gyre to the subtropical gyre through the Canary Current
28

. 76 

Finally, we note that multi-model ensemble in Coupled Model Intercomparison Project Phase 6 77 

(CMIP6) show that model resolution in itself does not impact the projected AMOC decline at the 78 

end of 21
st
 century

14,29
 and  recent studies with eddy-permitting coupled ocean-atmosphere (1/4º 79 

resolution) models
26

 have identified similar rates and magnitudes of AMOC weakening to a 0.1 80 

Sv FW forcing found in traditional non-eddy-permitting models. 81 

Paleoclimate data synthesis 82 

Much of the debate on the response of the AMOC to FW forcing reflects the lack of long-83 

term observations of the AMOC and FW fluxes that could be used to validate models
10-12

. In this 84 
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regard, the early-to-middle Holocene from ~11,700 to 6,000 years ago (11.7-6.0 ka) provides an 85 

opportunity to assess this issue due to well-constrained reconstructions of the AMOC and FW 86 

fluxes. In particular, global mean sea level rose ~60 m during this interval, with ~50 m of that 87 

rise derived from the final deglaciation of Northern Hemisphere ice sheets (Fig. 1c)
30-32

. This ice-88 

sheet melting resulted in a sustained FW flux of ~0.1 Sv (1 Sv = 10
6
 m

3
 s

-1
) to the Arctic and 89 

North Atlantic Oceans
33-36

, which is similar to the distribution and amount (0.07-0.12 Sv) of 90 

projected runoff and precipitation minus evaporation (P-E) associated with future global 91 

warming
37,38

. In addition, after the opening of the Bering Strait following the Younger Dryas 92 

cold interval
39

, FW transport from the Pacific Ocean to the Arctic Ocean increased and reached 93 

the modern day level of ~0.08 Sv
38

 around 6 ka associated with the ~60 m sea-level rise during 94 

this interval. Climate model simulations show that a sustained flux of ~0.10-0.18 Sv should have 95 

caused a significant reduction in, if not a collapse of, the AMOC
14,18,26

.  96 

However, two independent proxies that provide kinematic reconstructions of the AMOC 97 

during the early-to-middle Holocene indicate little response to this FW forcing
40-42

. Instead, the 98 

231
Pa/

230
Th proxy from multiple Atlantic cores

40,43
 as well as the 

18
O record from the Florida 99 

Straits
41

 suggest the AMOC strengthened before ~9 ka and remained at a strength similar to the 100 

late Holocene between 9 ka and 6 ka (Fig. 1b). Furthermore, with the exception of the century-101 

long 8,200-yr cold event
44

, and perhaps two other similarly short-lived cold events
45,46

, 102 

reconstructed Holocene Greenland surface temperatures show no signal of an AMOC-induced 103 

surface cooling such as the late-Pleistocene Younger Dryas cold period
47

 (Fig. 1a). Instead, 104 

Greenland temperatures warmed during the early Holocene and remained at the level similar to 105 

the late Holocene between 9 ka and 6 ka in parallel with the AMOC changes suggested by the 106 

kinematic proxies
40,42

 (Fig. 1). Having a sustained FW flux of ~0.10-0.18 Sv discharged into the 107 
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North Atlantic and Arctic Oceans from 11.7-6.0 ka in association with with little or no slowdown 108 

of the AMOC and associated cooling of North Atlantic climate constitutes a fundamental 109 

challenge to the paradigm of FW forcing of the AMOC, which we refer to as the “Holocene 110 

Meltwater-AMOC Paradox” (HMAP).  111 

Transient Holocene simulations 112 

We next illustrate how overestimation of AMOC sensitivity to FW forcing might cause 113 

temperature biases in future projections by comparing two transient simulations of the Holocene 114 

with and without FW forcing using the Community Climate System Model version 3 (CCSM3), 115 

a coupled ocean-atmosphere climate model of the US National Center for Atmospheric Research. 116 

We compare the surface temperature from the two simulations with three regional proxy 117 

temperature stacks from Greenland, Antarctica, and the Eastern Atlantic Ocean and 118 

Mediterranean Sea area that are known to be strongly influenced by changes in the AMOC (Fig. 119 

2 and Extended Data Figs. 1-5; see Methods for further details).  120 

The original TraCE-21K simulation (herein TraCE-21K-I) was forced by Earth’s orbital 121 

variations, greenhouse gases, ice-sheet variations, and FW forcing
48,49

. Due to large uncertainties 122 

of geologic reconstructions of FW forcing before Bølling warming (~14.7 ka), the FW scheme in 123 

TraCE-21K-I was designed to reproduce changes in the AMOC as suggested by proxies between 124 

the Last Glacial Maximum (~21 ka) and onset of the Bølling warming, followed by a switch to a 125 

geologic reconstruction of FW forcing after the onset of Bølling warming
33-36,49

. For the 126 

Holocene, contributions to the FW forcing include the sustained ~0.1 Sv meltwater flux from 127 

Northern Hemisphere ice sheets to the Arctic and North Atlantic Ocean in the early-to-middle 128 

Holocene (Extended Data Figs. 6-7, Supplementary Table 2) and continuous inflow of fresher 129 

North Pacific water to the Arctic and North Atlantic Oceans after the opening of Bering Strait
49

.  130 
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The simulated AMOC exhibits good agreement, by design, with proxy reconstructions of 131 

the AMOC through the onset of Bølling warming (21.0-14.5 ka) in TraCE-21K-I, with a strong 132 

AMOC reduction during the Oldest Dryas
48

 (Fig. 2a). However, under the FW forcing during the 133 

Holocene, the AMOC never recovers to the strength suggested by the proxies, being weakest 134 

during the period of the HMAP and remaining weak in response to Bering Strait throughflow
49

 135 

in the late Holocene. 136 

Global and hemispheric climate evolution simulated by TraCE-21K-I was in good 137 

agreement with global and regional proxy temperature stacks up to and including the onset of 138 

Bølling warming
4,5,48

. However, as with the AMOC, this agreement subsequently breaks down 139 

(Fig. 2). In particular, during the period of the HMAP, there is a clear mismatch between the 140 

proxy and modeled regional temperature stacks (Fig. 2 b-d and Extended Data Fig. 5), with a 141 

>8ºC cold bias in central Greenland, a >3ºC cold bias in the Eastern Atlantic Ocean and 142 

Mediterranean Sea, and an ~2ºC warm bias over Antarctica relative to the proxy records. The 143 

sign and amplitude of the simulated temperature biases reflects a bipolar seesaw response
18,48

 to 144 

the weaker simulated AMOC during the early Holocene (Fig. 2a), which could also produce 145 

large biases in tropical precipitation and the global monsoons
7
. Similar temperature-AMOC 146 

biases during the early Holocene were also found in transient simulations of the early Holocene 147 

from the Loch-Vecode-Ecbilt-Clio-Agism Model (LOVECLIM) and the Fast Met Office/UK 148 

Universities Simulator (FAMOUS) model
50,51

. 149 

We reran TraCE-21K following the onset of Bølling warming (herein TraCE-21K-II) 150 

with the same climatic forcing as in TraCE-21K-I but with no FW fluxes during the Bølling-151 

Allerød interstadial (~14.7 ka – 12.9 ka) and throughout the Holocene (Methods). In contrast to 152 

the TraCE-21K-I simulation with Holocene FW forcing, the modeled AMOC in TraCE-21K-II is 153 
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in better agreement with proxy Holocene AMOC kinematic reconstructions (Fig. 2a). This 154 

includes a two-phase recovery suggested by the highest resolution reconstruction from the 155 

Florida Straits (blue in Fig. 1b)
41

 involving an initial abrupt increase of the modeled AMOC after 156 

the end of FW forcing that was prescribed to cause the AMOC reduction during the Younger 157 

Dryas (Methods) followed by a further increase to full Holocene rates at ~9 ka (Fig. 2a). Ref.
52

 158 

attributed this two-phase AMOC recovery to an initial increase in deep water formation largely 159 

in the North Atlantic subpolar gyre and Irminger Sea regions followed by an abrupt increase of 160 

the AMOC when a density threshold is crossed in the Nordic Seas. In addition, the two-phase 161 

recovery of the AMOC is responsible for the temperature over Greenland and Eastern Atlantic 162 

Ocean/Mediterranean Sea reaching Holocene levels at ~9 ka (Fig 2b, c). Nevertheless, the model 163 

does not reproduce the transient temperature evolution during the two-phase recovery in the 164 

regional proxy temperature stacks due to the lack of understanding of the physical processes 165 

from changes in insolation, ice sheets and atmospheric greenhouse-gas concentrations that are 166 

responsible for transient AMOC changes on centennial time scales, although the changes in the 167 

latter two forcings during the Holocene likely had a small or negligible effect on the 168 

AMOC
13,51,53

. 169 

The more-realistic simulation of the AMOC after the two-phase recovery substantially 170 

improves the agreement between simulated temperatures in TraCE-21K-II and proxy 171 

temperatures (Fig. 2 b-d, Extended Data Fig. 5), largely removing the bias of the bipolar seesaw 172 

response due to the Holocene AMOC reduction in TraCE-21K-I (Fig. 3). Specifically, the cold 173 

bias of >8
o
C over Greenland and >3

o
C over the Eastern Atlantic Ocean/Mediterranean Sea in the 174 

TraCE-21K-I simulation during the period of the HMAP is reduced by ~80% and ~60%, 175 

respectively (Fig. 2b, 2c and Extended Data Fig.5). There is also an ~80% reduction of the warm 176 
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bias over Antarctica due to the enhanced northward heat transport from the AMOC in TraCE-177 

21K-II (Fig. 2d and Extended Data Fig. 5).  178 

Implications for past climate changes 179 

The successful transient simulation of the Holocene without FW forcing in TraCE-21K-II 180 

supports our inferences from the proxy data synthesis of the muted AMOC response to FW 181 

forcing in the Holocene. In addition, prior to the onset of Bølling warming, TraCE-21K-I 182 

simulated reasonable surface climate changes using a FW scheme designed to reproduce proxy-183 

based AMOC changes
48

, suggesting that prescribing the reconstructed AMOC instead of 184 

reconstructed FW forcing could improve the surface climate simulation of the Holocene and 185 

likely other past climate changes. Recent assessments of several proxy-based AMOC 186 

reconstructions during the last deglaciation concluded that they show coherent and robust 187 

changes during Heinrich event 1 and the Younger Dryas
41,43

. Nevertheless, these proxy signals 188 

can be modulated by other processes
54,55

, and further work will be needed to reduce remaining 189 

uncertainties in the reconstructed AMOC changes if they are to be used as the target for 190 

prescribing the AMOC in model simulations. 191 

In addition to the possible decoupling between the AMOC and ocean interior properties
11

, 192 

a key issue likely contributing to the HMAP concerns how the meltwater from Northern 193 

Hemisphere ice sheets is distributed to sites of deep-water formation
23

. Much of the 0.1 Sv 194 

meltwater flux from retreating Northern Hemisphere ice sheets, however, entered the oceans 195 

along 1000’s of kilometers of coastline bordering those oceans. For example, an estimated 0.02 196 

Sv from the northern Laurentide ice sheet entered the Arctic Ocean along ~2,000 km of coastline 197 

during the early Holocene
34

 which, if evenly distributed, corresponds to 0.0001 Sv per 10 km. 198 

Such small, local fluxes would likely be trapped along the coastline and quickly mixed by tides, 199 



 

 14 

wind forcing, and local circulation, and thus unlikely be uniformly spread over sites of North 200 

Atlantic deep-water formation.  201 

One question raised by the HMAP is whether the sensitivity of the AMOC to FW forcing 202 

differed during the last deglaciation. Unfortunately, however, this question cannot be currently 203 

addressed because of the large uncertainties in the FW forcing during the last deglaciation which 204 

led to the strategy used by TraCE-21K-I of prescribing FW forcing to cause changes in the 205 

AMOC consistent with proxy reconstructions between the Last Glacial Maximum (~21 ka) and 206 

onset of the Bølling warming
48,49

. Whether that FW forcing is realistic and how much of the 207 

deglacial AMOC variability may have been associated with other forcings (e.g., ice-sheet 208 

orography, insolation) thus remains unclear
51

. 209 

Another question raised by the HMAP is whether the cold bias associated with a reduced 210 

AMOC in TraCE-21K-I and other transient Holocene simulations
50

 reduced the modeled 211 

expression of a Holocene climate optimum around 9,000 to 5,000 years ago
56

 that has been 212 

documented extensively in proxy records
57,58

. We find that the new transient Holocene 213 

simulation in TraCE-21K-II exhibits a brief climate optimum at ~9 ka (Extended Data Figs. 8-9) 214 

after removing the cold bias in the North Atlantic region in TraCE-21K-I during the HMAP, 215 

suggesting the missing Holocene climate optimum in TraCE-21K-I may in part be due to the 216 

cold bias from overestimation of AMOC sensitivity to FW forcing during the HMAP. For the 217 

late Holocene temperature conundrum
59

, the lack of a cooling trend in TraCE-21K-I has been 218 

attributed to the underestimation of Arctic sea ice sensitivity to orbital forcing
60

 and the lack of 219 

anthropogenic forcing from the Holocene deforestation in transient Holocene simulations
61

.  220 

Implications for future projections 221 
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Although the HMAP raises questions about the overestimation of AMOC sensitivity to 222 

FW forcing in current climate models, we emphasize that it does not challenge the role of the 223 

AMOC in causing abrupt climate changes in the past and potentially in the future. For instance, 224 

although the source and magnitude of FW forcing required to slow the AMOC during the 225 

Younger Dryas cold interval is still debated
62,63

, the abrupt decrease of the AMOC during the 226 

Younger Dryas is widely accepted as the primary cause of the associated cooling (Fig. 2)
3,64

. We 227 

draw an analogy to atmospheric CO2 whereby its role in causing past climate change is clear 228 

while at the same time there are large uncertainties in our understanding of the physical and 229 

biogeochemical processes and feedbacks that caused lower CO2 during the Last Glacial 230 

Maximum and its subsequent increase
65

. Models thus prescribe CO2 as a forcing of past climate 231 

changes using concentrations from ice-core records, whereas the simulated future emission-232 

driven CO2 changes using carbon-cycle models are regarded as uncertain
66

. For the same reason, 233 

we suggest that until the HMAP is resolved, any simulated future AMOC changes from FW 234 

forcing and associated temperature, precipitation and regional sea level changes should be 235 

viewed with caution (Fig. 3). In particular, having a stable AMOC in the face of sustained and 236 

large ~0.10 FW fluxes from ice-sheet melting and ~0.08 Sv from Bering Strait opening during 237 

the HMAP suggests that current projections of AMOC decline in the 21
st
 century

14,66
 from 238 

projected increase of runoff and P-E
37,38 

as well as the FW exports to the North Atlantic Ocean as 239 

the result of the melting of Arctic sea ice from surface warming
16

 may be overestimated, which 240 

precludes their use for assessing the likelihood of abrupt AMOC changes in the 21
st
 century. As 241 

the projected increase of FW input into the Arctic at the end of the 21
st
 century reaches a similar 242 

level of ~0.1 Sv FW forcing (~0.05 Sv from runoff, ~0.015 Sv from P-E
38

, and 0.02-0.04 Sv 243 

from melting of the Greenland ice sheet
17,67-69

) as that associated with early Holocene ice-sheet 244 
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melting, we conclude that there is an urgent need to assess whether AMOC sensitivity to FW 245 

forcing is overestimated in current climate models and investigate alternative mechanisms for 246 

past AMOC disruptions in both glacial and interglacial periods and incorporate these 247 

mechanisms in climate models for future projections. 248 

249 
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Figure Captions 271 

Fig. 1. Holocene Meltwater-AMOC Paradox. a, Composite of temperature reconstruction over 272 

the central Greenland based on δ
15

N for 22–10 ka at GISP2, NGRIP and NEEM site
47

 and δ
18

O  273 

for 10–0 ka at GIPS2 site
70

. b-c, AMOC (b) and sea-level rise (c) during the last deglaciation 274 

and Holocene
32

. The AMOC reconstructions are based on 
231

Pa/
230

Th ratio
40,42

(green) and cross 275 

strait δ
18

O at the Florida Straits
41

(blue). The gray shading highlights the period of the HMAP 276 

with muted AMOC response to FW forcing associated with the ~50-m sea-level rise from the 277 

final deglaciation of Northern Hemisphere ice sheets. ka, thousand years before 1950. 278 

 279 

Fig. 2. Comparison of data and models for regional temperature stacks of past 21,000 years. a, 280 

AMOC reconstruction from 
231

Pa/
230

Th ratio in Bermuda rise
40,42

 and modeled maximum AMOC 281 

transport (below 500 m in the Atlantic Ocean). Sv, Sverdrup (10
6
 m

3
 s

-1
). b-d, surface air 282 

temperature stacks over Greenland (b), Antarctica (d) and SST stack in the Eastern Atlantic 283 

Ocean/Mediterranean Sea (c). Proxy data in black; before and include the onset of the Bølling, 284 

TraCE-21K-I and TraCE-21K-II are identical (red); after the onset of the Bølling, simulation 285 

based on the protocol of prescribing the reconstructed AMOC in red (TraCE-21K-II) and 286 

prescribing the reconstructed FW forcing in cyan (TraCE-21K-I). All modeled changes are 287 

referenced to the proxy data during the Oldest Dryas (19-15 ka) to aid the comparison. Note that 288 

scaling of modeled AMOC versus the 
231

Pa/
230

Th ratio is only intended to capture the relative 289 

range of variability. LGM, last glacial maximum. OD, Oldest Dryas. BA, Bølling-Allerød 290 

interstadial. YD, Younger Dryas. HMAP, Holocene Meltwater-AMOC paradox. LH, late 291 

Holocene. ka, thousand years before 1950. 292 

Fig. 3.  Differences of modeled surface temperature and precipitation during the early 293 

Holocene (9 ka – 6 ka) between simulations with and without FW forcing in the Holocene. 294 

The pattern of the temperature (ºC) and precipitation (mm/year) differences resembles the 295 

classic bipolar seesaw pattern with cooling over Greenland and the Eastern Atlantic 296 

Ocean/Mediterranean Sea, warming over Antarctica and southward movement of the 297 

Intertropical Convergence Zone (ITCZ) due to the reduction of the northward heat transports 298 

with the weaker AMOC in TraCE-21K-I
18,48

. 299 

 300 

301 
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Methods 468 

Transient climate modelling 469 

We conducted version II of the TraCE-21K simulation (TraCE-21K-II) at the 470 

Computational and Information Systems Laboratory
71,72

 of National Center for Atmospheric 471 

Research with the Community Climate System Model version 3 (CCSM3) based on the protocol 472 

of prescribing the reconstructed AMOC instead of the reconstructed FW forcing, which removes 473 

the temperature and precipitation biases in the Holocene segment of the first transient simulation 474 

of past 21,000 years (TraCE-21K-I)
48,49

 due to the overestimation of the response of AMOC to 475 

freshwater fluxes in the coupled global climate models. TraCE-21K-II was conducted with the 476 

same climatic forcing from Earth’s orbital variations and greenhouse gases as well as similar ice 477 

sheets variations as in TraCE-21K-I
49

, but with no freshwater flux being prescribed when the 478 

reconstructed AMOC exhibits typical interglacial strength during the Bølling-Allerød interstadial 479 

(~14.7 ka – 12.9 ka) and throughout the Holocene from ~11,500 years ago to present day. 480 

Between the LGM and the onset of the Bølling (~14.7 ka), TraCE-21K-I and TraCE-481 

21K-II are identical. TraCE-21K-II was first branched off from the 14.9 ka (ka, thousand years 482 

before 1950) of TraCE-21K-I with meltwater fluxes being totally cut off at the onset of Bølling 483 

warming around 14.7 ka. Between Bølling warming and the Younger Dryas, no meltwater flux 484 

was applied in TraCE-21K-II, which has been demonstrated to be able to produce a reasonable 485 

simulation of both Bølling interstadial over Greenland and the Antarctic Cold Reversal over 486 

Antarctica and the Southern Ocean
73

. During the Younger Dryas, a meltwater flux of 0.17 Sv 487 

was applied in the North Atlantic Ocean (50ºN-70ºN) between 12.9 ka and 11.7 ka in TraCE-488 

21K-II to slow the AMOC down to the minimum of ~4 Sv in CCSM3 (Extended Data Figs. 6-7 489 
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and Supplementary Table 3) and produce reasonable simulation of cooling over the Greenland 490 

and Eastern Atlantic/Mediterranean region
47

 (Fig. 2). At the end of the Younger Dryas, the 491 

meltwater forcing was ceased at 11.7 ka and no further meltwater was applied in TraCE-21K-II 492 

throughout the Holocene. As a result, the AMOC in TraCE-21K-II during the HMAP is much 493 

stronger than that in TraCE-21K-I due to stronger deep water formation associated with deeper 494 

winter mix layer depth in TraCE-21K-II (Extended Data Fig. 10). Note that for the Holocene 495 

segment of the TraCE-21K-I experiment, contributions to the FW forcing include the sustained 496 

~0.1 Sv meltwater flux from Northern Hemisphere ice sheets and inflow of fresher North Pacific 497 

water to the North Atlantic associated with the opening of Bering Strait. After 6 ka, the ~0.1 Sv 498 

meltwater flux from Northern Hemisphere ice sheets ended, but the inflow of fresher North 499 

Pacific water to the North Atlantic associated with the opening of Bering Strait continued. In 500 

order to conduct TraCE-21K-II with no freshwater flux throughout the Holocene, the Bering 501 

Strait was kept closed to prevent the inflow of fresher North Pacific water to the North Atlantic, 502 

which thus explains the difference between TraCE-21K-II and TraCE-21K-I after 6 ka.  As in 503 

TraCE-21K-I, TraCE-21K-II includes dynamic vegetation feedback and a fixed annual cycle of 504 

aerosol forcing
49

.  505 

Regional temperature stacks 506 

The ice-core and Eastern Atlantic/Mediterranean regional temperature stacks were 507 

derived from the deglacial proxy record compilations
4,47

 that contain most published high-508 

resolution (median resolution = 200 years), well-dated (636 radiocarbon dates) temperature 509 

records from the last deglaciation, and as such, represent the current state of knowledge on 510 

deglacial temperature variability in those regions. The data were linearly interpolated to 100-year 511 

resolution and combined as averages to yield mean temperature time series for the regional 512 
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temperature stacks. The detailed information of all proxy data for regional temperature stacks is 513 

documented in Supplementary Table 1 with the locations plotted in Extended Data Fig. 1. All 514 

modeled regional temperature stacks are derived as averages of simulated annual mean 515 

temperature with 10-year averages at proxy site locations. Figure 2 shows the comparison 516 

between the model and data for regional temperature stacks of past 21,000 years with changes in 517 

modeled regional temperature stacks referenced to the averages of proxy regional temperature 518 

stacks during the Oldest Dryas (19-15 ka). Extended Data Fig. 4 shows the comparison of 519 

regional temperature stacks between data and models with temperature anomalies of each 520 

regional stack from the average value in the Oldest Dryas (19 ka-15 ka).  521 

Data Availability 522 

The model datasets used for this study (Figs. 2-3) are available from the Open Science 523 

Framework (https://doi.org/10.17605/OSF.IO/NUQ2K). TraCE-21K-I model data are available 524 

from the Earth System Grid https://www.earthsystemgrid.org/project/trace.html and TraCE-21K-525 

II model data are available from the Transient Climate Simulation Lab https://trace-526 

21k.nelson.wisc.edu.  527 

Code Availability  528 

CCSM3 is freely available as open-source code from http://www.cesm.ucar.edu/models/ccsm3.0/ 529 
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