1,618 research outputs found

    Genome-Wide Regulatory Interactions in the Early Stages of Drosophila Speciation

    Get PDF
    Speciation occurs when reproductive barriers prevent the exchange of genetic information between individuals. A common form of reproductive barrier between species capable of interbreeding is hybrid sterility. Genomic incompatibilities between the divergent genomes of different species contribute to a reduction in hybrid fitness. These incompatibilities continue to accumulate after speciation, therefore, young divergent taxa with incomplete reproductive isolation are important in understating the genetics leading to speciation. Here, I use two Drosophila subspecies pairs. The first is D. willistoni consisting of D. w. willistoni and D. w. winge. The second subspecies pair is D. pseudoobscura, which is composed of D. p. pseudoobscura and D. p. bogotana. Both subspecies pairs are at the early stages of speciation and show incomplete reproductive isolation through unidirectional hybrid male sterility. In this thesis, I performed an exploratory survey of genome-wide expression analysis using RNA-sequencing on D. willistoni and determined the extent of regulatory divergence between the subspecies using allele-specific expression analysis. I found that misexpressed genes showed a degree of tissue specificity and that the sterile male hybrids had a higher proportion of misexpressed genes in the testes relative to the fertile hybrids. The analysis of regulatory divergence between this subspecies pair found a large (66-70%) proportion of genes with conserved regulatory elements. Of the genes showing evidence or regulatory divergence between subspecies, cis-regulatory divergence was more common than other types. In the D. pseudoobscura subspecies pair, I compared sequence and expression divergence and found no support for directional selection driving gene misexpression in their hybrids. Allele-specific expression analysis revealed that compensatory cis-trans mutations partly explained gene misexpression in the hybrids. The remaining hybrid misexpression occurs due to interacting gene networks or possible co-option of cis-regulatory elements by divergent transacting factors. Overall, the results of this thesis highlight the role of regulatory interactions in a hybrid genome and how these interactions could lead to hybrid breakdown by disrupting gene interaction networks.Natural Sciences and Engineering Research Council (NSERC)Master of Science in Bioscience, Technology, and Public Polic

    Collision Induced Dissociation Products of Disulfide-bonded Peptides: Ions Result from the Cleavage of More than One Bond

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://doi.org/10.1007/s13361-010-0064-x.Disulfide bonds are a posttranslational modification (PTM) that can be scrambled or shuffled to non-native bonds during recombinant expression, sample handling, or sample purification. Currently, mapping of disulfide bonds is difficult due, to various sample requirements and data analysis difficulties. One step towards facilitating this difficult work is developing a better understanding of how disulfide-bonded peptides fragment during Collision Induced Dissociation (CID). Most automated analysis algorithms function based on the assumption that the preponderance of product ions observed during the dissociation of disulfide-bonded peptides result from the cleavage of just one peptide bond, and in this report we tested that assumption by extensively analyzing the product ions generated when several disulfide-bonded peptides are subjected to CID on a QTOF instrument. We found that one of the most common types of product ions generated resulted from two peptide bond cleavages, or a double cleavage. We found that for several of the disulfide-bonded peptides analyzed, the number of double cleavage product ions outnumbered those of single cleavages. The influence of charge state and precursor ion size was investigated, to determine if those parameters dictated the amount of double cleavage product ions formed. It was found in this sample set that no strong correlation existed between the charge state or peptide size and the portion of product ions assigned as double cleavages. This data shows that these ions could account for many of the product ions detected in CID data of disulfide bonded peptides. We also showed the utility of double cleavage product ions on a peptide with multiple cysteines present. Double cleavage products were able to fully characterize the bonding pattern of each cysteine where typical single b/y cleavage products could not

    Characterizing O-linked glycopeptides by electron transfer dissociation: fragmentation rules and applications in data analysis

    Get PDF
    Studying protein O-glycosylation remains an analytical challenge. Different from N-linked glycans, the O-glycosylation site is not within a known consensus sequence. Additionally, O-glycans are heterogeneous with numerous potential modification sites. Electron transfer dissociation (ETD) is the method of choice in analyzing these glycopeptides since the glycan side chain is intact in ETD, and the glycosylation site can be localized on the basis of the c and z fragment ions. Nonetheless, new software is necessary for interpreting O-glycopeptide ETD spectra in order to expedite the analysis workflow. To address the urgent need, we studied the fragmentation of O-glycopeptides in ETD and found useful rules that facilitate their identification. By implementing the rules into an algorithm to score potential assignments against ETD-MS/MS data, we applied the method to glycopeptides generated from various O-glycosylated proteins including mucin, erythropoietin, fetuin and an HIV envelope protein, 1086.C gp120. The site-specific O-glycopeptide composition was correctly assigned in every case, proving the merits of our method in analyzing glycopeptide ETD data. The algorithm described herein can be easily incorporated into other automated glycomics tools

    GlycoPep Detector: A tool for assigning mass spectrometry data of N-linked glycopeptides based on their ETD spectra

    Get PDF
    Electron transfer dissociation (ETD) is commonly used in fragmenting N-linked glycopeptides in their mass spectral analyses to complement collision induced dissociation (CID) experiments. The glycan remains intact through ETD, while the peptide backbone is cleaved, providing the sequence of amino acids for a glycopeptide. Nonetheless, data analysis is a major bottleneck to high throughput glycopeptide identification based on ETD data, due to the complexity and diversity of ETD mass spectra compared to CID counterparts. GlycoPep Detector (GPD) is a web-based tool to address this challenge. It filters out noise peaks that interfere with glycopeptide sequencing, correlates input glycopeptide compositions with the ETD spectra, and assigns a score for each candidate. By considering multiple ion series (c-, z- and y-ions) and scoring them separately, the software gives more weighting to the ion series that matches peaks of high intensity in the spectra. This feature enables the correct glycopeptide to receive a high score while keeping scores of incorrect compositions low. GPD has been utilized to interpret data collected on six model glycoproteins (RNase B, avidin, fetuin, asialofetuin, transferrin and AGP) as well as a clade C HIV envelope glycoprotein, C.97ZA012 gp140ΔCFI. In every assignment made by GPD, the correct glycopeptide composition earns a score that is about two-fold higher than other incorrect glycopeptide candidates (decoys). The software can be accessed at http://glycopro.chem.ku.edu/ZZKHome.php

    Kinetic characterization of a glycoside hydrolase family 44 xyloglucanase/endoglucanase from Ruminococcus flavefaciens FD-1

    Get PDF
    Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyzed cellotetraose, cellopentaose, cellohexaose, carboxymethylcellulose (CMC), birchwood and larchwood xylan, xyloglucan, lichenan, and Avicel but not cellobiose, cellotriose, mannan, or pullulan. Addition of the CBM increased catalytic efficiencies on both CMC and birchwood xylan but not on xyloglucan, and it decreased rates of cellopentaose and cellohexaose hydrolysis. Catalytic efficiencies were much higher on xyloglucan than on other polysaccharides. Hydrolysis rates increased with increasing cellooligosaccharide chain length. Cellotetraose hydrolysis yielded only cellotriose and glucose. Hydrolysis of cellopentaose gave large amounts of cellotetraose and glucose, somewhat more of the former than of the latter, and much smaller amounts of cellobiose and cellotriose. Cellohexaose hydrolysis yielded much more cellotetraose than cellobiose and small amounts of glucose and cellotriose, along with a low and transient amount of cellopentaose

    The Cardiac Rehabilitation Inventory

    Get PDF
    Background: Uptake and adherence to cardiac rehabilitation (CR) are low, and a contributing factor to this may be the practical difficulties of providing a tailored CR environment suited to individual preferences and needs. Objective: The aim of this study was to develop and test a short questionnaire that CR practitioners can use to understand individual patient need and tailor support accordingly. Methods: A conceptual framework of engagement in CR was derived from a comprehensive literature review and the content analysis of semistructured interviews with 15 CR patients. The conceptual framework was used to construct the first version of the Cardiac Rehabilitation Inventory (CRI), which comprised 42 items. Responses on the CRI were measured using a 5-point Likert scale. The CRI was administered to 380 phase III and IV CR patients, and factor analysis (FA) was used to identify salient CR engagement factors. Results: The simplest structure found using FA was three 6-item subscales that all had good levels of internal consistency (Cronbach's !) and were labeled (a) outcome anxiety, ! = .726; (2) process anxiety, ! = .724; and (3) autonomy, ! = .653. The 3-factor CRI model was verified using confirmatory FA (CMin/df = 3.2, root-mean-square error of approximation = 0.073). Attenders were found to have higher levels of outcome anxiety than nonattenders (P G .001), and precontemplator nonattenders were found to have lower autonomy compared with attenders (P G .001). Standard multiple regression analysis indicated outcome anxiety was a strong predictor of CR intentions (r2 = 0.716), followed by autonomy (r 2 = 0.110) and process anxiety (r2 = 0.031). Conclusions: The CRI is a reliable method of measuring CR outcome anxiety, process anxiety, and autonomy. These CRI measurements provide rehabilitation practitioners with valuable information that can help provide individual tailored support

    Crowdsourcing genomic analyses of ash and ash dieback – power to the people

    Get PDF
    Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to ‘crowdsource’ analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at oadb.tsl.ac.uk and a public GitHub repository

    Exploring the impact of gender inequities on the promotion of cardiovascular health of women in Pakistan

    Get PDF
    Cardiovascular disease exerts an enormous burden on women\u27s health. The intake of a healthy diet may reduce this burden. However, social norms and economic constraints are often factors that restrain women from paying attention to their diet. Underpinned by critical realism, this study explores how gender/sex influences decision-making regarding food consumption among women of low socioeconomic status (SES). The study was carried out at two cardiac facilities in Karachi, Pakistan, on 24 participants (male and female from different ethnic backgrounds), who had received health education. Using an interpretive descriptive approach, the study identified major barriers to a healthy diet: proscribed gender roles and lack of women\u27s autonomy, power, male domination, and abusive behaviours. Cardiovascular risk and disease outcomes for the Pakistani women of low SES are likely to further escalate if individual and structural barriers are not reduced using multifactorial approaches

    Composition and distribution of the peracarid crustacean fauna along a latitudinal transect off Victoria Land (Ross Sea, Antarctica) with special emphasis on the Cumacea

    Get PDF
    The following study was the first to describe composition and structure of the peracarid fauna systematically along a latitudinal transect off Victoria Land (Ross Sea, Antarctica). During the 19th Antarctic expedition of the Italian research vessel “Italica” in February 2004, macrobenthic samples were collected by means of a Rauschert dredge with a mesh size of 500 m at depths between 85 and 515 m. The composition of peracarid crustaceans, especially Cumacea was investigated. Peracarida contributed 63% to the total abundance of the fauna. The peracarid samples were dominated by amphipods (66%), whereas cumaceans were represented with 7%. Previously, only 13 cumacean species were known, now the number of species recorded from the Ross Sea increased to 34. Thus, the cumacean fauna of the Ross Sea, which was regarded as the poorest in terms of species richness, has to be considered as equivalent to that of other high Antarctic areas. Most important cumacean families concerning abundance and species richness were Leuconidae, Nannastacidae, and Diastylidae. Cumacean diversity was lowest at the northernmost area (Cape Adare). At the area off Coulman Island, which is characterized by muddy sediment, diversity was highest. Diversity and species number were higher at the deeper stations and abundance increased with latitude. A review of the bathymetric distribution of the Cumacea from the Ross Sea reveals that most species distribute across the Antarctic continental shelf and slope. So far, only few deep-sea records justify the assumption of a shallow-water–deep-sea relationship in some species of Ross Sea Cumacea, which is discussed from an evolutionary point of view

    A Simple Approach to Assign Disulfide Connectivity Using Extracted Ion Chromatograms of Electron Transfer Dissociation Spectra

    Get PDF
    Increasing interest in production of protein-based pharmaceuticals (biotherapeutics) is accompanied by an increased need for verification of protein folding and correct disulfide bonding. Recombinant protein expression may produce aberrant disulfide bonds and could result in safety concerns or decreased efficacy. Thus, the thorough analysis of disulfide bonding is a necessity for protein therapeutics. The use of ETD facilitates this analysis because disulfide bonds are preferentially cleaved when subjected to ETD. Here, we make use of this well-characterized reaction to assign disulfide bonding networks by coupling the use of extracted ion chromatograms (XICs) of cysteine-containing peptides with ETD analysis to produce an efficient assignment approach for disulfide bonding. This method can be used to assign a disulfide pattern in a de novo fashion, to detect disulfide shuffling, and to provide information on heterogeneity, when more than one disulfide bonding pattern is present. The method was applied for assigning the disulfide-bonding network of a recombinant monomer of the HIV envelope protein gp120. It was found that one region of the protein, the V1/V2 loops, had significant heterogeneity in the disulfide bonds
    • 

    corecore