41 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Measurements of prompt charm production cross-sections in pp collisions at s=5 \sqrt{s}=5 TeV

    Get PDF
    Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 55\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.338.60\pm0.33\,pb1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0 < y < 4.5 and transverse momentum ranges 0<pT<10GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \begin{equation*} \sigma(pp\rightarrow D^0 X) = 1190 \pm 3 \pm 64\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^+ X) = 456 \pm 3 \pm 34\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D_s^+ X) = 195 \pm 4 \pm 19\,\mu\text{b} \end{equation*} \begin{equation*} \sigma(pp\rightarrow D^{*+} X)= 467 \pm 6 \pm 40\,\mu\text{b} \end{equation*} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pp collisions at the LHC at a centre-of-mass energy of 5 TeV. The data sample corresponds to an integrated luminosity of 8.60 ± 0.33 pb1^{−1} collected by the LHCb experiment. The production cross-sections of D0^{0}, D+^{+}, Ds+_{s}^{+} , and D+^{∗+} mesons are measured in bins of charm meson transverse momentum, pT_{T}, and rapidity, y. They cover the rapidity range 2.0 < y < 4.5 and transverse momentum ranges 0 < pT_{T} < 10 GeV/c for D0^{0} and D+^{+} and 1 < pT_{T} < 10 GeV/c for Ds+_{s}^{+} and D+^{∗+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1 < pT_{T} < 8 GeV/c are determined to be σ(ppD0X)=1004±3±54μb,σ(ppD+X)=402±2±30μb,σ(ppDs+X)=170±4±16μb,σ(ppD+X)=421±5±36μb, \begin{array}{l}\sigma \left( pp\to {D}^0X\right)=1004\pm 3\pm 54\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{+}X\right)=402\pm 2\pm 30\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}_s^{+}X\right)=170\pm 4\pm 16\mu \mathrm{b},\\ {}\sigma \left( pp\to {D}^{\ast +}X\right)=421\pm 5\pm 36\mu \mathrm{b},\end{array} where the uncertainties are statistical and systematic, respectively.Production cross-sections of prompt charm mesons are measured using data from pppp collisions at the LHC at a centre-of-mass energy of 55\,TeV. The data sample corresponds to an integrated luminosity of 8.60±0.338.60\pm0.33\,pb1^{-1} collected by the LHCb experiment. The production cross-sections of D0D^0, D+D^+, Ds+D_s^+, and D+D^{*+} mesons are measured in bins of charm meson transverse momentum, pTp_{\text{T}}, and rapidity, yy. They cover the rapidity range 2.0<y<4.52.0<y<4.5 and transverse momentum ranges 0<pT<10GeV/c0 < p_{\text{T}} < 10\, \text{GeV}/c for D0D^0 and D+D^+ and 1<pT<10GeV/c1 < p_{\text{T}} < 10\, \text{GeV}/c for Ds+D_s^+ and D+D^{*+} mesons. The inclusive cross-sections for the four mesons, including charge-conjugate states, within the range of 1<pT<8GeV/c1 < p_{\text{T}} < 8\, \text{GeV}/c are determined to be \sigma(pp\rightarrow D^0 X) = 1004 \pm 3 \pm 54\,\mu\text{b} \sigma(pp\rightarrow D^+ X) = 402 \pm 2 \pm 30\,\mu\text{b} \sigma(pp\rightarrow D_s^+ X) = 170 \pm 4 \pm 16\,\mu\text{b} \sigma(pp\rightarrow D^{*+} X)= 421 \pm 5 \pm 36\,\mu\text{b} where the uncertainties are statistical and systematic, respectively

    Measurement of the B0s→μ+μ− Branching Fraction and Effective Lifetime and Search for B0→μ+μ− Decays

    Get PDF
    A search for the rare decays Bs0→μ+μ- and B0→μ+μ- is performed at the LHCb experiment using data collected in pp collisions corresponding to a total integrated luminosity of 4.4  fb-1. An excess of Bs0→μ+μ- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0→μ+μ-)=(3.0±0.6-0.2+0.3)×10-9, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0→μ+μ- effective lifetime, τ(Bs0→μ+μ-)=2.04±0.44±0.05  ps, is reported. No significant excess of B0→μ+μ- decays is found, and a 95% confidence level upper limit, B(B0→μ+μ-)<3.4×10-10, is determined. All results are in agreement with the standard model expectations.A search for the rare decays Bs0μ+μB^0_s\to\mu^+\mu^- and B0μ+μB^0\to\mu^+\mu^- is performed at the LHCb experiment using data collected in pppp collisions corresponding to a total integrated luminosity of 4.4 fb1^{-1}. An excess of Bs0μ+μB^0_s\to\mu^+\mu^- decays is observed with a significance of 7.8 standard deviations, representing the first observation of this decay in a single experiment. The branching fraction is measured to be B(Bs0μ+μ)=(3.0±0.60.2+0.3)×109{\cal B}(B^0_s\to\mu^+\mu^-)=\left(3.0\pm 0.6^{+0.3}_{-0.2}\right)\times 10^{-9}, where the first uncertainty is statistical and the second systematic. The first measurement of the Bs0μ+μB^0_s\to\mu^+\mu^- effective lifetime, τ(Bs0μ+μ)=2.04±0.44±0.05\tau(B^0_s\to\mu^+\mu^-)=2.04\pm 0.44\pm 0.05 ps, is reported. No significant excess of B0μ+μB^0\to\mu^+\mu^- decays is found and a 95 % confidence level upper limit, B(B0μ+μ)<3.4×1010{\cal B}(B^0\to\mu^+\mu^-)<3.4\times 10^{-10}, is determined. All results are in agreement with the Standard Model expectations

    Memórias do Sistema Solar – O Uso do Jogo da Memória e do Origami para Divulgação Científica no Museu da Geodiversidade

    No full text
    O Museu da Geodiversidade (MGeo) tem como objetivo desenvolver atividades que auxiliem o visitante no conhecimento sobre  as geociências. Para atingir ao público infanto-juvenil procuramos abordar assuntos que despertam fascínio através do uso de atividades lúdicas com as quais seja possível interagir diretamente. Após pesquisa, percebemos que a temática sobre o Sistema Solar gera grande curiosidade entre essa parcela de visitantes e buscamos trabalhar esta questão através de um jogo da memória associado ao origami. A atividade parte do princípio inerente aos tradicionais jogos da memória, em que os participantes desenvolvem estratégias de memorização, estabelecendo relações entre imagens e suas posições no tabuleiro. Porém, nesse caso, o participante não irá associar apenas imagens. O jogo se divide em cartas com as imagens dos planetas e do Sol, as quais se associam às outras cartas com curiosidades a respeito de cada um dos elementos, totalizando o jogo.  A metodologia adotada para construção da ação envolveu 3 etapas: pesquisa sobre o tema, elaboração de ilustrações e definição da dinâmica da atividade. A partir da pesquisa ficaram definidas as informações que iriam compor as cartas textuais. No segundo passo, para tornar a atividade mais atraente dentro do universo infanto-juvenil, na representação dos planetas optou-se pela personificação de suas formas.  As expressões, poses e vestimentas, que compõem a personalidade de cada planeta e do Sol, foram desenvolvidas com base nas informações das cartas textuais, para gerar identificação entre imagens e textos, principal característica de um jogo da memória.  Para complementar o conhecimento construído, ao finalizar o jogo da memória, o participante é convidado a realizar uma atividade manual e divertida com uma técnica milenar: o Origami. Para que os participantes possam consolidar os conhecimentos sobre nosso Sistema Solar e que eles mesmos possam fazer suas dobraduras utilizamos uma forma bem comum, a tagarela ou abre-e-fecha, contando ainda com o auxílio de uma cartela com as figuras dos 8 planetas e do Sol. Na parte de fora da dobradura são colados os adesivos dos 4 planetas rochosos que estão mais próximos do Sol, que ficará no centro da dobradura, e na parte de dentro,  os 4 planetas gasosos. O movimento de abre e fecha do origami permitirá que esta relação seja visualizada pelo participante. Pudemos observar que essa atividade aborda o tema do Sistema Solar de maneira dinâmica, estimulando vários aspectos do desenvolvimento cognitivo e despertando o interesse do público pela temática das Geociências

    AMAZONIA CAMTRAP: A data set of mammal, bird, and reptile species recorded with camera traps in the Amazon forest

    Get PDF
    The Amazon forest has the highest biodiversity on Earth. However, information on Amazonian vertebrate diversity is still deficient and scattered across the published, peer-reviewed, and gray literature and in unpublished raw data. Camera traps are an effective non-invasive method of surveying vertebrates, applicable to different scales of time and space. In this study, we organized and standardized camera trap records from different Amazon regions to compile the most extensive data set of inventories of mammal, bird, and reptile species ever assembled for the area. The complete data set comprises 154,123 records of 317 species (185 birds, 119 mammals, and 13 reptiles) gathered from surveys from the Amazonian portion of eight countries (Brazil, Bolivia, Colombia, Ecuador, French Guiana, Peru, Suriname, and Venezuela). The most frequently recorded species per taxa were: mammals: Cuniculus paca (11,907 records); birds: Pauxi tuberosa (3713 records); and reptiles: Tupinambis teguixin (716 records). The information detailed in this data paper opens up opportunities for new ecological studies at different spatial and temporal scales, allowing for a more accurate evaluation of the effects of habitat loss, fragmentation, climate change, and other human-mediated defaunation processes in one of the most important and threatened tropical environments in the world. The data set is not copyright restricted; please cite this data paper when using its data in publications and we also request that researchers and educators inform us of how they are using these data

    Measurement of the Bs0J/ψηB_{s}^{0} \rightarrow J/\psi \eta lifetime

    No full text
    Using a data set corresponding to an integrated luminosity of 3fb13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Using a data set corresponding to an integrated luminosity of 3 fb−1 , collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0→J/ψη decay mode, τeff , is measured to be τeff=1.479±0.034 (stat)±0.011 (syst) ps. Assuming CP conservation, τeff corresponds to the lifetime of the light Bs0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode.Using a data set corresponding to an integrated luminosity of 3fb13 fb^{-1}, collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 7 and 8 TeV, the effective lifetime in the Bs0J/ψηB^0_s \rightarrow J/\psi \eta decay mode, τeff\tau_{\textrm{eff}}, is measured to be τeff=1.479±0.034 (stat)±0.011 (syst)\tau_{\textrm{eff}} = 1.479 \pm 0.034~\textrm{(stat)} \pm 0.011 ~\textrm{(syst)} ps. Assuming CPCP conservation, τeff\tau_{\textrm{eff}} corresponds to the lifetime of the light Bs0B_s^0 mass eigenstate. This is the first measurement of the effective lifetime in this decay mode

    Amplitude analysis of B+J/ψϕK+B^+\to J/\psi \phi K^+ decays

    No full text
    The first full amplitude analysis of B+→J/ψϕK+ with J/ψ→μ+μ-, ϕ→K+K- decays is performed with a data sample of 3  fb-1 of pp collision data collected at s=7 and 8 TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into ϕK+, and four J/ψϕ structures are observed, each with significance over 5 standard deviations. The quantum numbers of these structures are determined with significance of at least 4 standard deviations. The lightest has mass consistent with, but width much larger than, previous measurements of the claimed X(4140) state. The model includes significant contributions from a number of expected kaon excitations, including the first observation of the K*(1680)+→ϕK+ transition.The first full amplitude analysis of B+J/ψϕK+B^+\to J/\psi \phi K^+ with J/ψμ+μJ/\psi\to\mu^+\mu^-, ϕK+K\phi\to K^+K^- decays is performed with a data sample of 3 fb1^{-1} of pppp collision data collected at s=7\sqrt{s}=7 and 88 TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into ϕK+\phi K^+, and four J/ψϕJ/\psi\phi structures are observed, each with significance over 55 standard deviations. The quantum numbers of these structures are determined with significance of at least 44 standard deviations. The lightest has mass consistent with, but width much larger than, previous measurements of the claimed X(4140)X(4140) state. The model includes significant contributions from a number of expected kaon excitations, including the first observation of the K(1680)+ϕK+K^{*}(1680)^+\to\phi K^+ transition

    Study of Bc+B^+_c decays to the K+Kπ+K^+K^-\pi^+ final state and evidence for the decay Bc+χc0π+B^+_c\to\chi_{c0}\pi^+

    No full text
    A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bc\overline b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations.A study of Bc+→K+K-π+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0  fb-1 collected by the LHCb experiment in pp collisions at center-of-mass energies of 7 and 8 TeV. Evidence for the decay Bc+→χc0(→K+K-)π+ is reported with a significance of 4.0 standard deviations, giving σ(Bc+)σ(B+)×B(Bc+→χc0π+)=(9.8-3.0+3.4(stat)±0.8(syst))×10-6. Here B denotes a branching fraction while σ(Bc+) and σ(B+) are the production cross sections for Bc+ and B+ mesons. An indication of b¯c weak annihilation is found for the region m(K-π+)<1.834  GeV/c2, with a significance of 2.4 standard deviations.A study of Bc+K+Kπ+B_c^+\to K^+K^-\pi^+ decays is performed for the first time using data corresponding to an integrated luminosity of 3.0 fb1\mathrm{fb}^{-1} collected by the LHCb experiment in pppp collisions at centre-of-mass energies of 77 and 88 TeV. Evidence for the decay Bc+χc0(K+K)π+B_c^+\to\chi_{c0}(\to K^+K^-)\pi^+ is reported with a significance of 4.0 standard deviations, resulting in the measurement of σ(Bc+)σ(B+)×B(Bc+χc0π+)\frac{\sigma(B_c^+)}{\sigma(B^+)}\times\mathcal{B}(B_c^+\to\chi_{c0}\pi^+) to be (9.83.0+3.4(stat)±0.8(syst))×106(9.8^{+3.4}_{-3.0}(\mathrm{stat})\pm 0.8(\mathrm{syst}))\times 10^{-6}. Here B\mathcal{B} denotes a branching fraction while σ(Bc+)\sigma(B_c^+) and σ(B+)\sigma(B^+) are the production cross-sections for Bc+B_c^+ and B+B^+ mesons. An indication of bˉc\bar b c weak annihilation is found for the region m(Kπ+)<1.834GeV ⁣/c2m(K^-\pi^+)<1.834\mathrm{\,Ge\kern -0.1em V\!/}c^2, with a significance of 2.4 standard deviations
    corecore