24 research outputs found

    Análisis transcriptómico del daño por frío en fruto de melocotón

    Get PDF
    En la industria hortofrutícola las bajas temperaturas se utilizan para retrasar la maduración y el decaimiento de los frutos. A pesar de tener un uso extendido, los frutos de melocotón sometidos a almacenamiento prolongado en frío (CS) a menudo desarrollan una forma de daño por frío (CI) genéticamente controlada llamada harinosidad (mealiness/woolliness [WLT]): un desorden textural de la pulpa del fruto caracterizado por la perdida de suculencia Aunque durante el frío se han observado algunas alteraciones microscópicas, los síntomas visibles o macroscópicos de daño se desarrollan, no obstante, cuando los frutos se transfieren a temperatura ambiente (temperaturas de simulación de vida útil, SLR) para inducir la maduración después del almacenamiento. Con el objetivo de analizar los mecanismos moleculares subyacentes al desarrollo de la harinosidad durante el almacenamiento en frío (estadio pre-sintomático) y maduración en condiciones de simulación (estadio sintomático), diversos estudios transcriptómicos y proteómicos se han realizado. Estos estudios han resultado en la identificación de diferentes funciones celulares probablemente importantes para el desarrollo de los síntomas de la harinosidad, aunque no profundizan en el análisis y algunos resultados son aparentemente contradictorios (ya que en ellos se usan diferentes variedades de melocotón y protocolos de CS/SLR). Para proporcionar una visión más comprehensiva del desorden de la harinosidad en esta tesis se ha utilizado una aproximación genómica-genética que consiste en la combinación de grupos de líneas hermanas de la población de melocotón Pop-DG (con sensibilidad contrastante para desarrollar harinosidad) con una micromatriz de cDNA (Chillpeach microarray) dedicada al daño por frío para perfilar la expresión génica. Esta estrategia nos ha permitido identificar un gran número de genes asociados a la sensibilidad/tolerancia a desarrollar la harinosidad tanto a en estadios pre-sintomático (fruto maduro y CS) como sintomático, mientras que se compensan otras diferencias fenotípicas que segregan al azar en la población. Mediante la el análisis Fluidigm RT PCR, que se podría definir como qRT-PCR de media capacidad, hemos confirmado la validez de esos marcadores de expresión en los grupos de líneas hermanas, pero más importante, estos marcadores de expresión han resultado ser validos y reproducibles en lineas hermanas individuales de la población Pop-DG y en otros genotipos de melocotón (Oded y Hermoza) con diferentes grados de tolerancia al daño por frío. Además los perfiles de expresión de Od, Hz y los dos grupos de la población Pop-DG se han analizado también con la herramienta bioinformática ROSMETER, que proporciona información de la especificidad de la respuesta transcriptómica al estrés oxidativo. La anotación funcional de los genes diferencialmente expresados nos ha permitido proponer algunas hipótesis sobre los procesos moleculares que ocurren en el fruto de melocotón mientras está almacenado a 5ºC y cuando, posteriormente se deja madurar a temperatura ambiente, que extienden nuestra hipótesis de trabajo sobre el desorden de la harinosidad más allá de los cambios en la pared celular.Low temperatures are commonly used in the horticultural industry to delay peach ripening s and fruit decay. Despite widespread use, peach fruits subjected to prolonged cold storage (CS) periods often develop a genetically controlled form of chilling injury (CI) called mealiness/woolliness (WLT): a flesh textural disorder characterized by a lack of juiciness. Although some microscopic alterations had been observed during CS, visual symptoms (or macroscopic) of WLT appeared however upon transferring the fruits to the room temperature conditions (shelf life ripening [SLR] temperatures,) that are used for inducing ripening after CS. To dissect the molecular mechanisms underlying the WLT development during CS (pre-symptomatic stage) and SLR (symptomatic stage), several transcriptomic and proteomic studies have been reported. These studies have resulted in the identification of different cellular functions as important for the development of the WLT but they did not go deep in the analysis and some results were apparently contradictory (as they used different peach varieties and CS/SLR protocols). To give a more comprehensive view of WLT disorder we have used a genetical genomic approach consisting in the combination of pools of siblings of the Pop-DG population, with contrasting sensitivity to develop WLT, with a CI-dedicated Chillpeach microarray to profile gene expression. This strategy have enable us to identify a large number of genes associated to the sensitivity /tolerance to develop WLT both at pre-symptomatic (mature and CS) and symptomatic (SLR) stages, while compensating for other phenotypic differences randomly segregating in the population. By medium throughput qRT PCR analysis we confirmed the validity of these gene expression markers in the pools, but most important, there were proved to be reliable in individual siblings of the Pop-DG population and other peach genotypes (Oded and Hermoza) with different tolerance degree to chilling injury. Further the expression profiles of Oded, Hermoza and of the two pools from the Pop‐DG population were also analyzed with the bioinformatic tool ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress. Functional annotation of genes differentially expressed has enabled us to propose some hypotheses of the molecular processes occurring in the peach fruit while stored at 5ºC and later when let to ripen at room temperature that extends our working hypothesis about WLT disorder beyond the cell wall change

    Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes

    Get PDF
    [EN] All-flesh tomato cultivars are devoid of locular gel and exhibit enhanced firmness and improved postharvest storage. Here, we show that SlMBP3 is a master regulator of locular tissue in tomato fruit and that a deletion at the gene locus underpins the All-flesh trait. Intriguingly, All-flesh varieties lack the deleterious phenotypes reported previously for SlMBP3 under-expressing lines and which preclude any potential commercial use. We resolve the causal factor for this phenotypic divergence through the discovery of a natural mutation at the SlAGL11 locus, a close homolog of SlMBP3. Misexpressing SlMBP3 impairs locular gel formation through massive transcriptomic reprogramming at initial phases of fruit development. SlMBP3 influences locule gel formation by controlling cell cycle and cell expansion genes, indicating that important components of fruit softening are determined at early pre-ripening stages. Our findings define potential breeding targets for improved texture in tomato and possibly other fleshy fruits. The all-flesh type of tomato fruits is caused by mutation of the MBP3 gene, however, knocking down MBP3 in certain genotypes also affect plant and fruit development. Here, the authors show that a natural mutation of AGL11, a close homolog of MBP3, is responsible for the phenotypic divergence.The authors are grateful to L. Lemonnier and D. Saint-Martin for transformation and cultivation of tomato plants and GeT-PlaGe core facility (INRAe Toulouse) for ChIP deep sequencing. The authors also want to thank Dr. Christian Chevalier (INRAE et Univsersite de Bordeaux) for helping in analyzing genes related to cell cycle, cell division, and endoreduplication in tomato. This research was supported by the EU H2020 TomGEM 679796 and HARNESSTOM 101000716 projects.Huang, B.; Hu, G.; Wang, K.; Frasse, P.; Maza, E.; Djari, A.; Deng, W.... (2021). Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nature Communications. 12(1):1-14. https://doi.org/10.1038/s41467-021-27117-711412

    La tomata ‘Valenciana’ del Perelló: comparació de les seues característiques genètiques i fenotípiques amb el conjunt de tomates tradicionals europees.

    Full text link
    [CA] La tomata ‘Valenciana del Perelló’, originaria de l’horta de València, representa una de les més importants i apreciades varietats tradicional valencianes de consum en fresc. A pesar d’açò manquem d’una tipificació i caracterització en profunditat, el que dificulta identificar de manera especifica i objectiva característiques distintives d’aquest tipus de tomata tant especial. En aquest treball comparem les característiques genètiques i fenotípiques de la tomata la ‘Valenciana’ i, concretament la ‘Valenciana del Perelló’ amb un conjunt de mes de 1000 varietats de tomates tradicionals Europees amb la finalitat de proporcionar les bases per distingir la tomata ‘Valenciana’ del Perelló’ d’aquelles pertanyents a altres varietats tradicionals anomenades també valencianes o aquelles que són similars dins del conjunt tradicional europeu. La caracterització morfològica, basada en 10 caràcters morfològics i qualitatius ens indica que encara que hi ha diferències poblacionals, no són suficients per discriminar entre tipus varietals. El genotipat de les varietats tradicionals europees revela una estructura genètica ben definida per a la varietat de tomata ‘Valenciana del Perelló’ i respecte a altres tomates valencianes o tomates europees de característiques similars. En particular, 18 variants de seqüència SNPs en llocs específics del genoma de la tomata són suficients per distingir clarament la tomata ‘Valenciana’ tipus ‘ el Perelló’ de les altres varietats de tomata ‘Valenciana’ i la tomata ‘Valenciana’ del conjunt de tomata tradicional europeu. Tenint en compte açò, els nostres resultats proporcionen l’empremta genètica de la tomata ‘Valenciana del Perelló’, punt de partida per a la valorització d’aquesta varietat local i per a la seua utilització en programes de millora o el seu us certificat en mercats de productes d’alta qualitat.[EN] The ‘Valenciana d’El Perelló’ tomato, originating from the Spanish region l’Horta de València, represents one of the most important and appreciated Valencian landraces for fresh market. Despite this, we still lack a detailed typification and characterization of this variety which is a prerequisite for identifying specific and objective distinctive characteristics of this type of tomato. In this work we compared genetic and phenotypic traits of the tomato variety ‘Valenciana’, in particular the ‘Valenciana d’El Perelló’, against more than 1000 traditional varieties in order to provide the basis to distinguish the tomato ‘Valenciana d’El Perelló’ from a number of other landraces named ‘Valenciana’ or to those similar within the traditional European tomato collection. Morphological characterization, based in 10 fruit morphological and qualitative traits indicated that despite differences between populations, these traits do not discriminate varietal types. The genotyping of European traditional varieties reveal a well defined genetic structure of ‘Valenciana d’El Perelló’ with respect to other Valencian or European tomatoes with similar characteristics. In particular, 18 sequence SNP variants are sufficient to distinguish clearly the tomato ‘Valenciana d’El Perelló’ type from other ‘Valenciana’ varieties and the ‘Valenciana’ variety from the rest of European traditional tomato. Taking this into account, our results provide the ‘Valenciana d’El Perelló’ tomato genetic fingerprint, starting point for the valorization of this landrace and for its use in breeding programs or its certified use in high quality markets.Aquest projecte ha rebut financiació del programa Horizon 2020 de la Unió Europea a través del projecte No 634561 [This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 634561].Pons Puig, C.; Monforte Gilabert, AJ.; Figás Moreno, MDR.; Soler Aleixandre, S.; Blanca Postigo, JM.; Ziarsolo Areitioaurtena, P.; Cañizares Sales, J.... (2020). La tomata ‘Valenciana’ del Perelló: comparació de les seues característiques genètiques i fenotípiques amb el conjunt de tomates tradicionals europees. En I Congrés de la Tomaca Valenciana: La Tomaca Valenciana d'El Perelló. Editorial Universitat Politècnica de València. 141-152. https://doi.org/10.4995/TOMAVAL2017.2017.6196OCS14115

    Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato

    Full text link
    [EN] The Mediterranean basin countries are considered secondary centres of tomato diversification. However, information on phenotypic and allelic variation of local tomato materials is still limited. Here we report on the evaluation of the largest traditional tomato collection, which includes 1499 accessions from Southern Europe. Analyses of 70 traits revealed a broad range of phenotypic variability with different distributions among countries, with the culinary end use within each country being the main driver of tomato diversification. Furthermore, eight main tomato types (phenoclusters) were defined by integrating phenotypic data, country of origin, and end use. Genome-wide association study (GWAS) meta-analyses identified associations in 211 loci, 159 of which were novel. The multidimensional integration of phenoclusters and the GWAS meta-analysis identified the molecular signatures for each traditional tomato type and indicated that signatures originated from differential combinations of loci, which in some cases converged in the same tomato phenotype. Our results provide a roadmap for studying and exploiting this untapped tomato diversity.We thank Universitat Illes Balears, the Greek Gene Bank (GGB-NAGREF), Universita degli Studi Mediterranea Reggio Calabria, the CRB-Leg (INRA-GAFL)", the Genebank of CNR-IBBR (Bari, Italy) and ARCA 2010 for seed sharing. CNR-IBBR also acknowledges the seed donors, the Leibniz Institute of Plant Genetics and Crop Plant Research, Maria Cristina Patane (CNR-IBE, Catania, Italy) and La Semiorto Sementi SRL, as well as Mrs. Roberta Nurcato for technical assistance. IBMCP-UPV acknowledges Maurizio Calduch (ALCALAX) for technical assistance and Mario Fon for English grammar editing. This work was supported by European Commission H2020 research and innovation program through TRADITOM grant agreement No.634561, G2P-SOL, grant agreement No. 677379, and HARNESSTOM grant agreement No. 101000716. Clara Pons and Mariola Plazas are grateful to Spanish Ministerio de Ciencia e Innovacion for postdoctoral grants FJCI-2016-29118 and IJC2019-039091I/AEI/10.13039/501100011033; Joan Casals to a Serra Hunter Fellow at Universitat Politècnica de Catalunya.Pons Puig, C.; Casals, J.; Palombieri, S.; Fontanet, L.; Riccini, A.; Rambla Nebot, JL.; Ruggiero, A.... (2022). Atlas of phenotypic, genotypic and geographical diversity present in the European traditional tomato. Horticulture Research. 9:1-16. https://doi.org/10.1093/hr/uhac112116

    Prospective individual patient data meta-analysis of two randomized trials on convalescent plasma for COVID-19 outpatients

    Full text link
    Data on convalescent plasma (CP) treatment in COVID-19 outpatients are scarce. We aimed to assess whether CP administered during the first week of symptoms reduced the disease progression or risk of hospitalization of outpatients. Two multicenter, double-blind randomized trials (NCT04621123, NCT04589949) were merged with data pooling starting when = 50 years and symptomatic for <= 7days were included. The intervention consisted of 200-300mL of CP with a predefined minimum level of antibodies. Primary endpoints were a 5-point disease severity scale and a composite of hospitalization or death by 28 days. Amongst the 797 patients included, 390 received CP and 392 placebo; they had a median age of 58 years, 1 comorbidity, 5 days symptoms and 93% had negative IgG antibody-test. Seventy-four patients were hospitalized, 6 required mechanical ventilation and 3 died. The odds ratio (OR) of CP for improved disease severity scale was 0.936 (credible interval (CI) 0.667-1.311); OR for hospitalization or death was 0.919 (CI 0.592-1.416). CP effect on hospital admission or death was largest in patients with <= 5 days of symptoms (OR 0.658, 95%CI 0.394-1.085). CP did not decrease the time to full symptom resolution

    Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms

    Get PDF
    Background: Cold storage induces chilling injury (CI) disorders in peach fruit (woolliness/mealiness, flesh browning and reddening/bleeding) manifested when ripened at shelf life. To gain insight into the mechanisms underlying CI, we analyzed the transcriptome of 'Oded' (high tolerant) and 'Hermoza' (relatively tolerant to woolliness, but sensitive to browning and bleeding) peach cultivars at pre-symptomatic stages. The expression profiles were compared and validated with two previously analyzed pools (high and low sensitive to woolliness) from the Pop-DG population. The four fruit types cover a wide range of sensitivity to CI. The four fruit types were also investigated with the ROSMETER that provides information on the specificity of the transcriptomic response to oxidative stress. Results: We identified quantitative differences in a subset of core cold responsive genes that correlated with sensitivity or tolerance to CI at harvest and during cold storage, and also subsets of genes correlating specifically with high sensitivity to woolliness and browning. Functional analysis indicated that elevated levels, at harvest and during cold storage, of genes related to antioxidant systems and the biosynthesis of metabolites with antioxidant activity correlates with tolerance. Consistent with these results, ROSMETER analysis revealed oxidative stress in 'Hermoza' and the progeny pools, but not in the cold resistant 'Oded'. By contrast, cold storage induced, in sensitivity to woolliness dependant manner, a gene expression program involving the biosynthesis of secondary cell wall and pectins. Furthermore, our results indicated that while ethylene is related to CI tolerance, differential auxin subcellular accumulation and signaling may play a role in determining chilling sensitivity/tolerance. In addition, sugar partitioning and demand during cold storage may also play a role in the tolerance/sensitive mechanism. The analysis also indicates that vesicle trafficking, membrane dynamics and cytoskeleton organization could have a role in the tolerance/sensitive mechanism. In the case of browning, our results suggest that elevated acetaldehyde related genes together with the core cold responses may increase sensitivity to browning in shelf life. Conclusions: Our data suggest that in sensitive fruit a cold response program is activated and regulated by auxin distribution and ethylene and these hormones have a role in sensitivity to CI even before fruit are cold stored.This research was funded by US-Israel Binational Agriculture Research and Development Fund (BARD) Grant no. US-4027-07. We thank the European Science Foundation for Short Term Scientific Mission grants to A. Dagar (COST Action 924, reference codes COST-STSM-924-04254 and Quality Fruit COST FA1106 for networking.Pons Puig, C.; Dagar, A.; Martí Ibáñez, MC.; Singh, V.; Crisosto, CH.; Friedman, H.; Lurie, S.... (2015). Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics. 16:1-35. https://doi.org/10.1186/s12864-015-1395-6S13516Crisosto C, Mitchell F, Ju Z. Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. Hort Sci. 1999;34:1116–8.Lurie S, Crisosto C. Chilling injury in peach and nectarine. Postharvest Biol Technol. 2005;37:195–208.Crisosto C, Mitchell F, Johnson S. Factors in fresh market stone fruit quality. Postharvest News Inform. 1995;6(2):17–21.Dawson DM, Melton LD, Watkins CB. Cell wall changes in nectarines (Prunus persica): solubilization and depolymerization of pectic and neutral polymers during ripening and in mealy fruit. Plant Physiol. 1992;100(3):1203–10.Zhou H, Sonego L, Khalchitski A, Ben Arie R, Lers A, Lurie A. Cell wall enzymes and cell wall changes in ‘Flavortop’ nectarines: mRNA abundance, enzyme activity, and changes in pectic and neutral polymers during ripening and in woolly fruit. J Am Soc Hort Sci. 2000;125:630–7.Jarvis MC, Briggs SPH, Knox JP. Intercellular adhesion and cell separation in plants. Plant Cell Environ. 2003;26(7):977–89.Zhou H, Ben-Arie R, Lurie S. Pectin esterase, polygalacturonase and gel formation in peach pectin fractions. Phytochemistry. 2000;55(3):191–5.Brummell DA, Dal Cin V, Lurie S, Crisosto CH, Labavitch JM. Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. J Exp Bot. 2004;55(405):2041–52.Kader AA, Chordas A. Evaluating the browning potential of peaches. Calif Agric. 1984;38:14–5.Cevallos-Casals BA, Byrne D, Okie WR, Cisneros-Zevallos L. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 2006;96(2):273–80.Rojas G, Méndez MA, Muñoz C, Lemus G, Hinrichsen P. Identification of a minimal microsatellite marker panel for the fingerprinting of peach and nectarine cultivars. Electron J Biotechnol. 2008;11:4–5.Scorza R, Sherman WB, Lightner GW. Inbreeding and co-ancestry of low chill short fruit development period freestone peaches and nectarines produced by the University of Florida breeding program. Fruit Varieties J. 1988;43:79–85.Brooks R, Olmo HP. Register of New Fruit and Nut Varieties, 2nd edition edn: Univ of California Press; 1972.Okie WR, Service USAR. Handbook of peach and nectarine varieties: performance in the southeastern United States and index of names: U.S. Dept. of Agriculture, Agricultural Research Service; 1998Martínez-García P, Peace C, Parfitt D, Ogundiwin E, Fresnedo-Ramírez J, Dandekar A, et al. Influence of year and genetic factors on chilling injury susceptibility in peach (Prunus persica (L.) Batsch). Euphytica. 2012;185(2):267–80.Ogundiwin E, Martí C, Forment J, Pons C, Granell A, Gradziel T, et al. Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol. 2008;68(4–5):379–97.Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A. A Bulk Segregant Gene Expression Analysis of a Peach Population Reveals Components of the Underlying Mechanism of the Fruit Cold Response. PLoS ONE. 2014;9(3):e90706.Rosenwasser S, Fluhr R, Joshi JR, Leviatan N, Sela N, Hetzroni A, et al. ROSMETER: A Bioinformatic Tool for the Identification of Transcriptomic Imprints Related to Reactive Oxygen Species Type and Origin Provides New Insights into Stress Responses. Plant Physiol. 2013;163(2):1071–83.Kader AA, Mitchell FG. Maturity and quality. In: James H. LaRue RSJ, vol. Publication No. 3331, editor. Peaches, Plums, and Nectarines: Growing and Handling for Fresh Market. Oakland, Calif: Cooperative Extension, University of California, Division of Agriculture and Natural Resources; 1989. p. 191–6.Dagar A, Friedman H, Lurie S. Thaumatin-like proteins and their possible role in protection against chilling injury in peach fruit. Postharvest Biol Technol. 2010;57(2):77–85.Lill RE, Van Der Mespel GJ. A method for measuring the juice content of mealy nectarines. Sci Hortic. 1988;36(3–4):267–71.Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci. 2001;98(9):5116–21.Pavlidis P, Noble WS. Matrix2png: a utility for visualizing matrix data. Bioinformatics. 2003;1-9(2):295–6.Dagar A, Pons Puig C, Marti Ibanez C, Ziliotto F, Bonghi CH, Crisosto C, et al. Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability. Tree Genet Genomes. 2013;9(1):223–35.Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell. 2009;21(3):972–84.Gilmour S, Zarka D, Stockinger E, Salazar M, Houghton J, Thomashow M. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J. 1998;16(4):433–42.Dong L, Zhou H-W, Sonego L, Lers A, Lurie S. Ethylene involvement in the cold storage disorder of ‘Flavortop’ nectarine. Postharvest Biol Technol. 2001;23(2):105–15.Zhou H-W, Dong L, Ben-Arie R, Lurie S. The role of ethylene in the prevention of chilling injury in nectarines. J Plant Physiol. 2001;158(1):55–61.Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J. 2007;50(2):347–63.Giraldo E, Díaz A, Corral JM, García A. Applicability of 2-DE to assess differences in the protein profile between cold storage and not cold storage in nectarine fruits. J Proteome. 2012;75(18):5774–82.Obenland D, Vensel W, Hurkman Ii W. Alterations in protein expression associated with the development of mealiness in peaches. J Hortic Sci Biotechnol. 2008;83(1):85–93.Vizoso P, Meisel L, Tittarelli A, Latorre M, Saba J, Caroca R, et al. Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genomics. 2009;10(1):423.Hannah M, Heyer A, Hincha D. A Global Survey of Gene Regulation during Cold Acclimation in Arabidopsis thaliana. PLoS Genet. 2005;1(2):e26.Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, et al. Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes under Salinity Stress during the Vegetative Growth Stage. Plant Physiol. 2005;139(2):822–35.Lurie S, Zhou H-W, Lers A, Sonego L, Alexandrov S, Shomer I. Study of pectin esterase and changes in pectin methylation during normal and abnormal peach ripening. Physiol Plant. 2003;119(2):287–94.Peace C, Crisosto C, Gradziel T. Endopolygalacturonase: A candidate gene for Freestone and Melting flesh in peach. Mol Breed. 2005;16(1):21–31.Luza JG, van Gorsel R, Polito VS, Kader AA. Chilling Injury in Peaches: A Cytochemical and Ultrastructural Cell Wall Study. J Am Soc Hortic Sci. 1992;117(1):114–8.Masia A, Zanchin A, Rascio N, Ramina A. Some Biochemical and Ultrastructural Aspects of Peach Fruit Development. J Am Soc Hortic Sci. 1992;117(5):808–15.Dean GH, Zheng H, Tewari J, Huang J, Young DS, Hwang YT, et al. The Arabidopsis MUM2 Gene Encodes a β-Galactosidase Required for the Production of Seed Coat Mucilage with Correct Hydration Properties. Plant Cell Online. 2007;19(12):4007–21.Johnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor. Plant Cell Online. 2002;14(6):1359–75.Karssen CM, der Swan DLC B-v, Breekland AE, Koornneef M. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta. 1983;157(2):158–65.Bui M, Lim N, Sijacic P, Liu Z. LEUNIG_HOMOLOG and LEUNIG Regulate Seed Mucilage Extrusion in ArabidopsisF. J Integr Plant Biol. 2011;53(5):399–408.Hussey S, Mizrachi E, Spokevicius A, Bossinger G, Berger D, Myburg A. SND2, a NAC transcription factor gene, regulates genes involved in secondary cell wall development in Arabidopsis fibres and increases fibre cell area in Eucalyptus. BMC Plant Biol. 2011;11(1):173.Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, Jones J, et al. Transcriptional repression by AtMYB4 controls production of UV‐protecting sunscreens in Arabidopsis. EMBO J. 2000;19(22):6150–61.Romera-Branchat M, Ripoll JJ, Yanofsky MF, Pelaz S. The WOX13 homeobox gene promotes replum formation in the Arabidopsis thaliana fruit. Plant J. 2013;73(1):37–49.Itkin M, Seybold H, Breitel D, Rogachev I, Meir S, Aharoni A. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Plant J. 2009;60(6):1081–95.Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, et al. The Tomato FRUITFULL Homologs TDR4/FUL1 and MBP7/FUL2 Regulate Ethylene-Independent Aspects of Fruit Ripening. Plant Cell Online. 2012;24(11):4437–51.Jaakola L, Poole M, Jones MO, Kämäräinen-Karppinen T, Koskimäki JJ, Hohtola A, et al. A SQUAMOSA MADS Box Gene Involved in the Regulation of Anthocyanin Accumulation in Bilberry Fruits. Plant Physiol. 2010;153(4):1619–29.Ogundiwin EA, Peace CP, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, et al. Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genetics Genomes. 2008;4(3):543–54.Baxter IR, Young JC, Armstrong G, Foster N, Bogenschutz N, Cordova T, et al. A plasma membrane H + −ATPase is required for the formation of proanthocyanidins in the seed coat endothelium of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2005;102(7):2649–54.Cheng GW, Crisosto CH. Browning Potential, Phenolic Composition, and Polyphenoloxidase Activity of Buffer Extracts of Peach and Nectarine Skin Tissue. J Am Soc Hortic Sci. 1995;120(5):835–8.Wang Y-S, Tian S-P, Xu Y. Effects of high oxygen concentration on pro- and anti-oxidant enzymes in peach fruits during postharvest periods. Food Chem. 2005;91(1):99–104.Sevillano L, Sanchez-Ballesta MT, Romojaro F, Flores FB. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species. Postharvest technologies applied to reduce its impact. J Sci Food Agric. 2009;89(4):555–73.Provart NJ, Gil P, Chen W, Han B, Chang HS, Wang X, et al. Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol. 2003;132(2):893–906.Prasad T, Anderson M, Stewart C. Acclimation, Hydrogen Peroxide, and Abscisic Acid Protect Mitochondria against Irreversible Chilling Injury in Maize Seedlings. Plant Physiol. 1994;105(2):619–27.Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Van Breusegem F, Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot. 2010;61(15):4197–220.Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell Online. 1997;9(11):1963–71.Schepetilnikov M, Dimitrova M, Mancera E, Martínez AG, Keller M, Ryabova LA. TOR and S6K1 promote translation reinitiation of uORF containing mRNAs via phosphorylation of eIF3h. EMBO J. 2013;32(8):1087–102.Xiong Y, Sheen J. The Role of Target of Rapamycin Signaling Networks in Plant Growth and Metabolism. Plant Physiol. 2014;164(2):499–512.Murray JAH, Jones A, Godin C, Traas J. Systems Analysis of Shoot Apical Meristem Growth and Development: Integrating Hormonal and Mechanical Signaling. Plant Cell Online. 2012;24(10):3907–19.Leiber R-M, John F, Verhertbruggen Y, Diet A, Knox JP, Ringli C. The TOR Pathway Modulates the Structure of Cell Walls in Arabidopsis. Plant Cell Online. 2010;22(6):1898–908.Garcia-Hernandez M, Davies E, Baskin TI, Staswick PE. Association of Plant p40 Protein with Ribosomes Is Enhanced When Polyribosomes Form during Periods of Active Tissue Growth. Plant Physiol. 1996;111(2):559–68.Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P. mTOR controls mitochondrial oxidative function through a YY1-PGC-1[agr] transcriptional complex. Nature. 2007;450(7170):736–40.Baur AH, Yang SF. Methionine metabolism in apple tissue in relation to ethylene biosynthesis. Phytochemistry. 1972;11(11):3207–14.Peiser GD, Wang T-T, Hoffman NE, Yang SF, Liu H-w, Walsh CT. Formation of cyanide from carbon 1 of 1-aminocyclopropane-1-carboxylic acid during its conversion to ethylene. Proc Natl Acad Sci. 1984;81(10):3059–63.Begheldo M, Manganaris GA, Bonghi C, Tonutti P. Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biol Technol. 2008;48(1):8–8.Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell. 2012;24(6):2578–95.Thain SC, Vandenbussche F, Laarhoven LJJ, Dowson-Day MJ, Wang Z-Y, Tobin EM, et al. Circadian Rhythms of Ethylene Emission in Arabidopsis. Plant Physiol. 2004;136(3):3751–61.Wang KLC, Yoshida H, Lurin C, Ecker JR. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature. 2004;428(6986):945–50.Zheng Z, Guo Y, Novák O, Dai X, Zhao Y, Ljung K, et al. Coordination of auxin and ethylene biosynthesis by the aminotransferase VAS1. Nat Chem Biol. 2013;9(4):244–6.Poschet G, Hannich B, Raab S, Jungkunz I, Klemens PAW, Krueger S, et al. A Novel Arabidopsis Vacuolar Glucose Exporter is involved in cellular Sugar Homeostasis and affects Composition of Seed Storage Compounds. Plant Physiol. 2011;157(4):1664–76.Wang K, Shao X, Gong Y, Zhu Y, Wang H, Zhang X, et al. The metabolism of soluble carbohydrates related to chilling injury in peach fruit exposed to cold stress. Postharvest Biol Technol. 2013;86:53–61.Liu Y-H, Offler CE, Ruan Y-L. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. Frontiers Plant Sci. 2013;4:282.Coello P, Hey SJ, Halford NG. The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot. 2011;62(3):883–93.Baena-González E, Sheen J. Convergent energy and stress signaling. Trends Plant Sci. 2008;13(9):474–82.Baena-González E. Energy Signaling in the Regulation of Gene Expression during Stress. Mol Plant. 2010;3(2):300–13.Robaglia C, Thomas M, Meyer C. Sensing nutrient and energy status by SnRK1 and TOR kinases. Curr Opin Plant Biol. 2012;15(3):301–7.Uemura M, Joseph RA, Steponkus PL. Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions). Plant Physiol. 1995;109(1):15–30.Zhang C, Tian S. Crucial contribution of membrane lipids’ unsaturation to acquisition of chilling-tolerance in peach fruit stored at 0°c. Food Chem. 2009;115(2):405–11.Abdrakhamanova A, Wang QY, Khokhlova L, Nick P. Is Microtubule Disassembly a Trigger for Cold Acclimation? Plant Cell Physiol. 2003;44(7):676–86.Baluška F, Hlavacka A, Šamaj J, Palme K, Robinson DG, Matoh T, et al. F-Actin-Dependent Endocytosis of Cell Wall Pectins in Meristematic Root Cells. Insights from Brefeldin A-Induced Compartments. Plant Physiology. 2002;130(1):422–31.Baluška F, Liners F, Hlavačka A, Schlicht M, Van Cutsem P, McCurdy DW, et al. Cell wall pectins and xyloglucans are internalized into dividing root cells and accumulate within cell plates during cytokinesis. Protoplasma. 2005;225(3–4):141–55.Gonzalez-Aguero M, Pavez L, Ibanez F, Pacheco I, Campos-Vargas R, Meisel L, et al. Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot. 2008;59(8):1973–86.Bashline L, Lei L, Li S, Gu Y. Cell Wall, Cytoskeleton, and Cell Expansion in Higher Plants. Mol Plant. 2014;4:586–600.Dhonukshe P, Grigoriev I, Fischer R, Tominaga M, Robinson DG, Hašek J, et al. Auxin transport inhibitors impair vesicle motility and actin cytoskeleton dynamics in diverse eukaryotes. Proc Natl Acad Sci. 2008;105(11):4489–94.Fischer U, Men S, Grebe M. Lipid function in plant cell polarity. Curr Opin Plant Biol. 2004;7(6):670–6.Schrick K, Fujioka S, Takatsuto S, Stierhof Y-D, Stransky H, Yoshida S, et al. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J. 2004;38(2):227–43.Cheng GW, Crisosto CH. Iron—Polyphenol Complex Formation and Skin Discoloration in Peaches and Nectarines. J Am Soc Hortic Sci. 1997;122(1):95–9.Bouché N, Fait A, Zik M, Fromm H. The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in Arabidopsis. Plant Mol Biol. 2004;55(3):315–25.Pedreschi R, Franck C, Lammertyn J, Erban A, Kopka J, Hertog M, et al. Metabolic profiling of ‘Conference’ pears under low oxygen stress. Postharvest Biol Technol. 2009;51(2):123–30

    A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage

    Full text link
    [EN] Peach fruits subjected to prolonged cold storage (CS) to delay decay and over-ripening often develop a form of chilling injury (CI) called mealiness/woolliness (WLT), a flesh textural disorder characterized by lack of juiciness. Transcript profiles were analyzed after different lengths of CS and subsequent shelf life ripening (SLR) in pools of fruits from siblings of the Pop-DG population with contrasting sensitivity to develop WLT. This was followed by quantitative PCR on pools and individual lines of the Pop-DG population to validate and extend the microarray results. Relative tolerance to WLT development during SLR was related to the fruit's ability to recover from cold and the reactivation of normal ripening, processes that are probably regulated by transcription factors involved in stress protection, stress recovery and induction of ripening. Furthermore, our results showed that altered ripening in WLT fruits during shelf life is probably due, in part, to cold-induced desynchronization of the ripening program involving ethylene and auxin hormonal regulation of metabolism and cell wall. In addition, we found strong correlation between expression of RNA translation and protein assembly genes and the visual injury symptoms.Pons Puig, C.; Marti, C.; Forment Millet, JJ.; Crisosto, C.; Dandekar, A.; Granell Richart, A. (2016). A genetic genomics-expression approach reveals components of the molecular mechanisms beyond the cell wall that underlie peach fruit woolliness due to cold storage. Plant Molecular Biology. 92(4-5):483-503. doi:10.1007/s11103-016-0526-zS483503924-5Abeles FB (1968) Role of RNA and protein synthesis in abscission. Plant Physiol 43:1577–1586Achard P, Gong F, Cheminant S, Alioua M, Hedden P, Genschik P (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129. doi: 10.1105/tpc.108.058941Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152. doi: 10.1126/science.284.5423.2148Andersson A et al (2004) A transcriptional timetable of autumn senescence. Genome Biol 5:R24Arsovski AA, Popma, Haughn GW, Carpita NC, McCann MC, Western TL (2009) AtBXL1 encodes a bifunctional β-d-xylosidase/α-l-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiol 150:1219–1234. doi: 10.1104/pp.109.138388Ay N, Janack B, Humbeck K (2014) Epigenetic control of plant senescence and linked processes. J Exp Bot 65:3875–3887. doi: 10.1093/jxb/eru132Barry CS, Llop-Tous MI, Grierson D (2000) The regulation of 1-aminocyclopropane-1-carboxylic acid synthase gene expression during the transition from system-1 to system-2 ethylene synthesis in tomato. Plant Physiol 123:979–986Begheldo M, Manganaris GA, Bonghi C, Tonutti P (2008) Different postharvest conditions modulate ripening and ethylene biosynthetic and signal transduction pathways in Stony Hard peaches. Postharvest Biol Technol 48:8–8. doi: 10.1016/j.postharvbio.2007.09.023Bemer M et al (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell Online 24:4437–4451. doi: 10.1105/tpc.112.103283Ben-Arie R, Sonego L (1980) Pectolytic enzyme activity involved in woolly breakdown of stored peaches. Phytochem 19:2553–2555. doi: 10.1016/S0031-9422(00)83917-5Borsani J et al (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823–1837. doi: 10.1093/jxb/erp055Bouton S et al (2002) QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14:2577–2590. doi: 10.1105/tpc.004259Brummell DA, Dal Cin V, Crisosto CH, Labavitch JM (2004a) Cell wall metabolism during maturation, ripening and senescence of peach fruit. J Exp Bot 55:2029–2039. doi: 10.1093/jxb/erh227erh227Brummell DA, Dal Cin V, Lurie S, Crisosto CH, Labavitch JM (2004b) Cell wall metabolism during the development of chilling injury in cold-stored peach fruit: association of mealiness with arrested disassembly of cell wall pectins. J Exp Bot 55:2041–2052. doi: 10.1093/jxb/erh228erh228Buchanan CD et al (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720. doi: 10.1007/s11103-005-7876-2Buescher RW, Furmanski RJ (1978) Role of pectinesterase and polygalacturonase in the formation of woolliness in peaches. J Food Sci 43:264–266. doi: 10.1111/j.1365-2621.1978.tb09788.xCampos-Vargas R et al (2006) Seasonal variation in the development of chilling injury in ’O’Henry’ peaches. Scientia Hortic 110:79–83Cao S, Ye M, Jiang S (2005) Involvement of GIGANTEA gene in the regulation of the cold stress response in Arabidopsis. Plant Cell Rep 24:683–690. doi: 10.1007/s00299-005-0061-xCelesnik H, Ali GS, Robison FM, Reddy ASN (2013) Arabidopsis thaliana VOZ (Vascular plant One-Zinc finger) transcription factors are required for proper regulation of flowering time. Biol Open 2:424–431. doi: 10.1242/bio.20133764Corbacho J, Romojaro F, Pech J-C, Latché A, Gomez-Jimenez MC (2013) Transcriptomic events involved in melon mature-fruit abscission comprise the sequential induction of cell-wall degrading genes coupled to a stimulation of endo and exocytosis. PLoS One 8:e58363. doi: 10.1371/journal.pone.0058363Crisosto C, Mitchell F, Ju Z (1999) Susceptibility to chilling injury of peach, nectarine, and plum cultivars grown in California. HortScience 34:1116–1118Dagar A et al (2013) Comparative transcript profiling of a peach and its nectarine mutant at harvest reveals differences in gene expression related to storability. Tree Genet Genom 9:223–235. doi: 10.1007/s11295-012-0549-9Dardick C, Callahan A, Chiozzotto R, Schaffer R, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13De Godoy F et al (2013) Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato. J Exp Bot 64:2449–2466. doi: 10.1093/jxb/ert106Del Campillo E, Lewis LN (1992) Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones. Plant Physiol 98:955–961Dhanapal AP, Martínez-García PJ, Gradziel, Crisosto CH (2012) First genetic linkage map of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) fruit with SSR and SNP markers. J Plant Sci Mol Breeding 1. doi: 10.7243/2050-2389-1-3Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984. doi: 10.1105/tpc.108.063958Dong L, Zhou H-W, Sonego L, Lers A, Lurie S (2001) Ethylene involvement in the cold storage disorder of ‘Flavortop’ nectarine. Postharvest Biol Technol 23:105–115. doi: 10.1016/S0925-5214(01)00106-5El-Sharkawy I, Kim WS, Jayasankar S, Svircev AM, Brown DC (2008) Differential regulation of four members of the ACC synthase gene family in plum. J Exp Bot 59:2009–2027. doi: 10.1093/jxb/ern056ern056Eriksson EM et al (2004) Effect of the Colorless non-ripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184–4197. doi: 10.1104/pp.104.045765Falara V, Manganaris G, Ziliotto F, Manganaris A, Bonghi C, Ramina A, Kanellis A (2011) A ß-d-xylosidase and a PR-4B precursor identified as genes accounting for differences in peach cold storage tolerance. Funct Int Genom 11:357–368. doi: 10.1007/s10142-010-0204-1Farrona S et al (2011) Brahma is required for proper expression of the floral repressor FLC in Arabidopsis. PLoS One 6:e17997. doi: 10.1371/journal.pone.0017997Feng J et al (2015) SKIP confers osmotic tolerance during salt stress by controlling alternative gene splicing in Arabidopsis. Mol Plant 8:1038–1052. doi: 10.1016/j.molp.2015.01.011Fernández-Trujillo JP, Cano A, Artés F (1998) Physiological changes in peaches related to chilling injury and ripening. Postharvest Biol Technol 13:109–119. doi: 10.1016/S0925-5214(98)00006-4Fishman ML, Levaj B, Gillespie D, Scorza R (1993) Changes in the physico-chemical properties of peach fruit pectin during on-tree ripening and storage. J Am Soc Hortic Sci 118:343–349Fornara F et al (2015) The GI–CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. Plant J 81:695–706. doi: 10.1111/tpj.12759Foucart C, Paux E, Ladouce N, San-Clemente H, Grima-Pettenati J, Sivadon P (2006) Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus. New Phytol 170:739–752. doi: 10.1111/j.1469-8137.2006.01705.xFranssen SU et al (2011) Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc Nat Acad Sci 108:19276–19281. doi: 10.1073/pnas.1107680108Fraser PD, Bramley P, Seymour GB (2001) Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening. Phytochem 58:75–79Fujisawa M et al (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell. doi: 10.1105/tpc.113.119453Gille S, Pauly M (2012) O-acetylation of plant cell wall polysaccharides. Front Plant Sci 3:12. doi: 10.3389/fpls.2012.00012Gilmour S, Zarka D, Stockinger E, Salazar M, Houghton J, Thomashow M (1998) Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16:433–442Gonzalez-Aguero M et al (2008) Identification of woolliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973–1986Hopkins MT, Lampi Y, Wang T-W, Liu Z, Thompson JE (2008) Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis. Plant Physiol 148:479–489. doi: 10.1104/pp.108.118869Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130:618–626. doi: 10.1104/pp.006783Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194. doi: 10.1104/pp.112.210740Huang XS et al (2015) ICE1 of Poncirus trifoliata functions in cold tolerance by modulating polyamine levels through interacting with arginine decarboxylase. J Exp Bot. doi: 10.1093/jxb/erv138Humbeck K (2013) Epigenetic and small RNA regulation of senescence. Plant Mol Biol 82:529–537. doi: 10.1007/s11103-012-0005-0Jaglo-Ottosen K, Gilmour S, Zarka D, Schabenberger O, Thomashow M (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106Kader AA, Mitchell FG (1989) Maturity and quality. In: James H., LaRue RSJ (ed) Peaches, plums, and nectarines: growing and handling for fresh market Vol Publication No. 3331. cooperative extension. University of California, Division of Agriculture and Natural Resources, Oakland, CA, pp 191–196Kalberer SR, Wisniewski M, Arora R (2006) Deacclimation and reacclimation of cold-hardy plants: current understanding and emerging concepts. Plant Sci 171:3–16. doi: 10.1016/j.plantsci.2006.02.013Kim HY, Farcuh M, Cohen Y, Crisosto C, Sadka A, Blumwald E (2015) Non-climacteric ripening and sorbitol homeostasis in plum fruits. Plant Sci 231:30–39. doi: 10.1016/j.plantsci.2014.11.002Kodaira KS et al (2011) Arabidopsis Cys2/His2 zinc-finger proteins AZF1 and AZF2 negatively regulate abscisic acid-repressive and auxin-inducible genes under abiotic stress conditions. Plant Physiol 157:742–756. doi: 10.1104/pp.111.182683Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23:337–350. doi: 10.1046/j.1365-3040.2000.00560.xLauxmann MA et al (2014) Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. Plant Cell Environ 37:601–616. doi: 10.1111/pce.12181Leboeuf E, Guillon F, Thoiron S, Lahaye M (2005) Biochemical and immunohistochemical analysis of pectic polysaccharides in the cell walls of Arabidopsis mutant QUASIMODO 1 suspension-cultured cells: implications for cell adhesion. J Exp Bot 56:3171–3182. doi: 10.1093/jxb/eri314Lester D, Speirs J, Orr G, Brady C (1994) Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Plant Physiol 105:225–231Lildballe DL, Pedersen DS, Kalamajka R, Emmersen J, Houben A, Grasser KD (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol 384:9–21. doi: 10.1016/j.jmb.2008.09.014Liners F, Gaspar T, Van Cutsem P (1994) Acetyl- and methyl-esterification of pectins of friable and compact sugar-beet calli: consequences for intercellular adhesion. Planta 192:545–556. doi: 10.1007/bf00203593Liu Z et al (2008) Modulation of eIF5A1 expression alters xylem abundance in Arabidopsis thaliana. J Exp Bot 59:939–950. doi: 10.1093/jxb/ern017Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25:402–408. doi: 10.1006/meth.2001.1262Lombardo VA et al (2011) Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiol 157:1696–1710. doi: 10.1104/pp.111.186064Lovisetto A, Guzzo F, Tadiello A, Confortin E, Pavanello A, Botton A, Casadoro G (2013) Characterization of a bZIP gene highly expressed during ripening of the peach fruit. Plant Physiol Biochem 70:462–470. doi: 10.1016/j.plaphy.2013.06.014Lurie S, Crisosto C (2005) Chilling injury in peach and nectarine. Postharvest Biol Technol 37:195–208Lurie S, Levin A, Greve LC, Labavitch JM (1994) Pectic polymer changes in nectarines during normal and abnormal ripening. Phytochem 36:11–17. doi: 10.1016/S0031-9422(00)97003-1Lurie S, Zhou HW, Lers A, Sonego L, Alexandrov S, Shomer I (2003) Study of pectin esterase and changes in pectin methylation during normal and abnormal peach ripening. Physiol Plant 119:287–294. doi: 10.1034/j.1399-3054.2003.00178.xLuza JG, Van Gorsel R, Polito VS, Kader AA (1992) Chilling injury in peaches: a cytochemical and ultrastructural cell wall study. J Am Soc Hortic Sci 117:114–118Manganaris G, Rasori A, Bassi D, Geuna F, Ramina A, Tonutti P, Bonghi C (2011) Comparative transcript profiling of apricot (Prunus armeniaca L.) fruit development and on-tree ripening. Tree Genet Genom 7:609–616. doi: 10.1007/s11295-010-0360-4Manning K et al (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952. doi: 10.1038/ng1841Mlynárová L, Nap JP, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885. doi: 10.1111/j.1365-313X.2007.03185.xMouille G et al (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 50:605–614. doi: 10.1111/j.1365-313X.2007.03086.xMuñoz-Robredo P, Rubio P, Infante R, Campos-Vargas R, Manríquez D, González-Agüero M, Defilippi BG (2012) Ethylene biosynthesis in apricot: identification of a ripening-related 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene. Postharvest Biol Technol 63:85–90. doi: 10.1016/j.postharvbio.2011.09.001Nakai Y, Fujiwara S, Kubo Y, Sato MH (2013) Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis. Plant Signal Behav 8:e23358. doi: 10.4161/psb.23358Navarro M, Ayax C, Martinez Y, Laur J, El Kayal W, Marque C, Teulieres C (2011) Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development. Plant Biotechnol J 9:50–63. doi: 10.1111/j.1467-7652.2010.00530.xPBI530Nilo R et al (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomics 11:43. doi: 10.1186/1471-2164-11-43Ning YQ et al (2015) Two novel NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res. doi: 10.1093/nar/gku1382Nunes C et al (2013) The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol 162:1720–1732. doi: 10.1104/pp.113.220657Obenland DM, Crisosto CH, Rose JKC (2003) Expansin protein levels decline with the development of mealiness in peaches. Postharvest Biol Technol 29:11–18. doi: 10.1016/S0925-5214(02)00245-4Ogundiwin E et al (2008) Development of ChillPeach genomic tools and identification of cold-responsive genes in peach fruit. Plant Mol Biol 68:379–397Ogundiwin EA, Peace CP, Gradziel, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Genomics 10:587. doi: 10.1186/1471-2164-10-587Oono Y et al (2006) Monitoring expression profiles of Arabidopsis genes during cold acclimation and deacclimation using DNA microarrays. Funct Int Genom 6:212–234. doi: 10.1007/s10142-005-0014-zOrfila C et al (2001) Altered middle lamella homogalacturonan and disrupted deposition of (1–>5)-alpha-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato. Plant Physiol 126:210–221Orfila C, Huisman MM, Willats WG, Van Alebeek GJ, Schols HA, Seymour GB, Knox JP (2002) Altered cell wall disassembly during ripening of Cnr tomato fruit: implications for cell adhesion and fruit softening. Planta 215:440–447. doi: 10.1007/s00425-002-0753-1Orr G, Brady C (1993) Relationship of endopolygalacturonase activity to fruit softening in a freestone peach. Postharvest Biol Technol 3:121–130. doi: 10.1016/0925-5214(93)90004-MPandey N et al (2013) CAMTA 1 regulates drought responses in Arabidopsis thaliana. BMC Genomics 14:216Pavez L, Hödar C, Olivares F, González M, Cambiazo V (2013) Effects of postharvest treatments on gene expression in Prunus persica fruit: normal and altered ripening. Postharvest Biol Technol 75:125–134. doi: 10.1016/j.postharvbio.2012.08.002Pavlidis P, Noble WS (2003) Matrix2png: a utility for visualizing matrix data. Bioinformatics 19:295–296. doi: 10.1093/bioinformatics/19.2.295Peace C, Crisosto C, Gradziel T (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breeding 16:21–31Polashock JJ, Arora R, Peng Y, Naik D, Rowland LJ (2010) Functional identification of a C-repeat binding factor transcriptional activator from blueberry associated with cold acclimation and freezing tolerance. J Am Soc Hortic Sci 135:40–48Pons C, Martí C, Forment J, Crisosto CH, Dandekar AM, Granell A (2014) A bulk segregant gene expression analysis of a peach population reveals components of the underlying mechanism of the fruit cold response. PLoS One 9:e90706. doi: 10.1371/journal.pone.0090706Pons C et al (2015) Pre-symptomatic transcriptome changes during cold storage of chilling sensitive and resistant peach cultivars to elucidate chilling injury mechanisms. BMC Genomics 16:245Pressey R, Avants J (1978) Differences in polygalacteronase composition of clingstone and freestone peaches. J Food Sci 43:1415–1423Rajasundaram D, Selbig J, Persson S, Klie S (2014) Co-ordination and divergence of cell-specific transcription and translation of genes in Arabidopsis root cells. Annal Bot. doi: 10.1093/aob/mcu151Rapacz M (2002) Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Annal Bot 89:543–549. doi: 10.1093/aob/mcf090Romeu J, Monforte A, Sanchez G, Granell A, Garcia-Brunton J, Badenes M, Rios G (2014) Quantitative trait loci affecting reproductive phenology in peach. BMC Plant Biol 14:52Sakamoto T, Bonnin E, Thibault JF (2003) A new approach for studying interaction of the polygalacturonase-inhibiting proteins with pectins. Biochim Biophys Acta (BBA) 1621:280–284. doi: 10.1016/S0304-4165(03)00093-XSanchez G, Venegas-Caleron M, Salas J, Monforte A, Badenes M, Granell A (2013) An integrative "omics" approach identifies new candidate genes to impact aroma volatiles in peach fruit. BMC Genomics 14:343Sánchez G, Besada C, Badenes ML, Monforte AJ, Granell A (2012) A non-targeted approach unravels the volatile network in peach fruit. PLoS One 7:e38992. doi: 10.1371/journal.pone.0038992Shima Y et al (2014) Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci Biotechnol Biochem 78:231–237. doi: 10.1080/09168451.2014.878221Sun J, Jiang H, Xu Y, Li H, Wu X, Xie Q, Li C (2007) The CCCH-type zinc finger proteins AtSZF1 and AtSZF2 regulate salt stress responses in Arabidopsis. Plant Cell Physiol 48:1148–1158. doi: 10.1093/pcp/pcm088Tacken E et al (2010) The role of ethylene and cold temperature in the regulation of the apple POLYGALACTURONASE1 gene and fruit softening. Plant Physiol 153:294–305. doi: 10.1104/pp.109.151092Tadiello A et al (2016) On the role of ethylene, auxin and a GOLVEN-like peptide hormone in the regulation of peach ripening. BMC Plant Biol 16:1–17. doi: 10.1186/s12870-016-0730-7Tatsuki M et al (2013) Increased levels of IAA are required for system 2 ethylen

    AUXIN RESPONSE FACTOR 2 Intersects Hormonal Signals in the Regulation of Tomato Fruit Ripening.

    No full text
    The involvement of ethylene in fruit ripening is well documented, though knowledge regarding the crosstalk between ethylene and other hormones in ripening is lacking. We discovered that AUXIN RESPONSE FACTOR 2A (ARF2A), a recognized auxin signaling component, functions in the control of ripening. ARF2A expression is ripening regulated and reduced in the rin, nor and nr ripening mutants. It is also responsive to exogenous application of ethylene, auxin and abscisic acid (ABA). Over-expressing ARF2A in tomato resulted in blotchy ripening in which certain fruit regions turn red and possess accelerated ripening. ARF2A over-expressing fruit displayed early ethylene emission and ethylene signaling inhibition delayed their ripening phenotype, suggesting ethylene dependency. Both green and red fruit regions showed the induction of ethylene signaling components and master regulators of ripening. Comprehensive hormone profiling revealed that altered ARF2A expression in fruit significantly modified abscisates, cytokinins and salicylic acid while gibberellic acid and auxin metabolites were unaffected. Silencing of ARF2A further validated these observations as reducing ARF2A expression let to retarded fruit ripening, parthenocarpy and a disturbed hormonal profile. Finally, we show that ARF2A both homodimerizes and interacts with the ABA STRESS RIPENING (ASR1) protein, suggesting that ASR1 might be linking ABA and ethylene-dependent ripening. These results revealed that ARF2A interconnects signals of ethylene and additional hormones to co-ordinate the capacity of fruit tissue to initiate the complex ripening process

    Tomato PYR/PYL/RCAR ABA receptors show high expression in root, differential sensitivity to the ABA-agonist quinabactin and capability to enhance plant drought resistance

    Full text link
    This article contains supplementary data at: http://jxb.oxfordjournals.org/content/65/15/4451/suppl/DC1 © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology[EN] Abscisic acid (ABA) plays a crucial role in the plant’s response to both biotic and abiotic stress. Sustainable production of food faces several key challenges, particularly the generation of new varieties with improved water use efciency and drought tolerance. Different studies have shown the potential applications of Arabidopsis PYR/PYL/ RCAR ABA receptors to enhance plant drought resistance. Consequently the functional characterization of orthologous genes in crops holds promise for agriculture. The full set of tomato (Solanum lycopersicum) PYR/PYL/RCAR ABA receptors have been identied here. From the 15 putative tomato ABA receptors, 14 of them could be grouped in three subfamilies that correlated well with corresponding Arabidopsis subfamilies. High levels of expression of PYR/ PYL/RCAR genes was found in tomato root, and some genes showed predominant expression in leaf and fruit tissues. Functional characterization of tomato receptors was performed through interaction assays with Arabidopsis and tomato clade A protein phosphatase type 2Cs (PP2Cs) as well as phosphatase inhibition studies. Tomato receptors were able to inhibit the activity of clade A PP2Cs differentially in an ABA-dependent manner, and at least three receptors were sensitive to the ABA agonist quinabactin, which inhibited tomato seed germination. Indeed, the chemical activation of ABA signalling induced by quinabactin was able to activate stress-responsive genes. Both dimeric and monomeric tomato receptors were functional in Arabidopsis plant cells, but only overexpression of monomeric-type receptors conferred enhanced drought resistance. In summary, gene expression analyses, and chemical and transgenic approaches revealed distinct properties of tomato PYR/PYL/RCAR ABA receptors that might have biotechnological implications.This work was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas (grants BIO2011-23446 to PLR, BFU2011-25384 to AA, and Fontagro and COST1106 for networking activities to AG); fellowships to LR and MP; and a Juan de la Cierva contract to MGG. Cristina Martinez-Andujar and the Bioinformatics Core Service of the IBMCP are acknowledged for the SlEF1a marker and help in bioinformatics analyses, respectively.González Guzmán, M.; Rodriguez, L.; Lorenzo Orts, L.; Pons Puig, C.; Sarrion-Perdigones, A.; Fernandez, MA.; Peirats Llobet, M.... (2014). Tomato PYR/PYL/RCAR ABA receptors show high expression in root, differential sensitivity to the ABA-agonist quinabactin and capability to enhance plant drought resistance. Journal of Experimental Botany. 65(15):4451-4464. https://doi.org/10.1093/jxb/eru219S44514464651

    Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development

    Full text link
    [EN] Modern tomato (Solanum lycopersicum) varieties are bred for uniform ripening (u) light green fruit phenotypes to facilitate harvests of evenly ripened fruit. U encodes a Golden 2-like (GLK) transcription factor, SlGLK2, which determines chlorophyll accumulation and distribution in developing fruit. In tomato, two GLKs-SlGLK1 and SlGLK2-are expressed in leaves, but only SlGLK2 is expressed in fruit. Expressing GLKs increased the chlorophyll content of fruit, whereas SlGLK2 suppression recapitulated the u mutant phenotype. GLK overexpression enhanced fruit photosynthesis gene expression and chloroplast development, leading to elevated carbohydrates and carotenoids in ripe fruit. SlGLK2 influences photosynthesis in developing fruit, contributing to mature fruit characteristics and suggesting that selection of u inadvertently compromised ripe fruit quality in exchange for desirable production traits.Minimum Information About a Microarray Experiment (MIAME)-compliant microarray data are available at http://ted.bti.cornell.edu. and at http://www.ebi.ac.uk/arrayexpress/(accession E-MEXP-3652). F. Carrari and A. Fernie provided S. pennellii SlGLK2, and J. Maloof provided S. habrochaites SlGLK2 sequences. The U. S. Department of Agriculture (USDA)/National Institute of Food and Agriculture Solanaceae Coordinated Agricultural Project provided potato data. We are grateful to the Tomato Genome Consortium and the SOL Genomics Network for prepublication access to the tomato genome sequence. The S. pennellii introgression lines were provided by the C. M. Rick Tomato Genetics Resource Center; the S. pimpinellifolium populations were provided by the Instituto de Hortofruticultura Subtropical y Mediterranea "La Mayora," Consejo Superior de Investigaciones Cientificas; and both populations are available by request from the sources. The AtGLK-expressing lines were provided by Mendel Biotechnology and Seminis/Monsanto Vegetable Seeds. SlGLK2, the corresponding lines, and the F2 10-1 IL x M82 population lines and seeds are available from J. J. G. without restriction. Seminis/Monsanto will make available, upon request, and under a material transfer agreement indicating they are to be used for noncommercial purposes, the following lines: LexA:AtGLK1:p35S:LexA-Gal4; LexA:AtGLK1:pLTP:LexA-Gal4; LexA:AtGLK1:pRbcS:LexA-Gal4; LexA:AtGLK1:pPDS:LexA-Gal4; LexA:AtGLK2:p35S:LexA-Gal4; LexA:AtGLK2:pLTP:LexA-Gal4; LexA:AtGLK2:pRbcS:LexA-Gal4; LexA:AtGLK2:pPDS:LexA-Gal4; plus the T63 control line. Other biological materials are available by request from A. L. T. P. or J.J.G. A. L. T. P., T. H., K.L.-C., R.F.-B., and A. B. B. have filed a provisional U. S. patent application UC #2011-841, "Introduction of wild species GLK genes for improved ripe tomato fruit quality," through the University of California. A. L. T. P. and A. B. B. have filed the U. S. patent application #2010/0154078, " Transcription factors that enhance traits in plant organs," through Mendel Biotechnology. Assistance from B. Blanco-Ulate, S. Phothiset, S. Reyes, A. Abraham, L. Gilani, and G. Arellano is gratefully acknowledged. J. Langdale provided helpful advice regarding GLK phylogeny and nomenclature. G. Adamson and P. Kysar, Electron Microscopy (EM) Laboratory, University of California Davis Medical Center did the EM work. University of California Discovery and partners funded the pepper analysis and the initial investigations of the Arabidopsis GLKs. The Vietnam Education Foundation supported C.N. Fundacion Genoma Espana ESPSOL Project provided partial funding to A.G. USDA-Agricultural Research Service, USDA-National Research Initiative (2007-02773), and NSF (Plant Genome Program IOS-0923312) provided support to J.J.G.Powell, AL.; Nguyen, CV.; Hill, T.; Cheng, KL.; Figueroa-Balderas, R.; Aktas, H.; Ashrafi, H.... (2012). Uniform ripening Encodes a Golden 2-like Transcription Factor Regulating Tomato Fruit Chloroplast Development. Science. 336:1711-1715. doi:10.1126/science.1222218S1711171533
    corecore