9 research outputs found

    Overexpression of Hydroxynitrile Lyase in Cassava Roots Elevates Protein and Free Amino Acids while Reducing Residual Cyanogen Levels

    Get PDF
    Cassava is the major source of calories for more than 250 million Sub-Saharan Africans, however, it has the lowest protein-to-energy ratio of any major staple food crop in the world. A cassava-based diet provides less than 30% of the minimum daily requirement for protein. Moreover, both leaves and roots contain potentially toxic levels of cyanogenic glucosides. The major cyanogen in cassava is linamarin which is stored in the vacuole. Upon tissue disruption linamarin is deglycosylated by the apolplastic enzyme, linamarase, producing acetone cyanohydrin. Acetone cyanohydrin can spontaneously decompose at pHs >5.0 or temperatures >35°C, or is enzymatically broken down by hydroxynitrile lyase (HNL) to produce acetone and free cyanide which is then volatilized. Unlike leaves, cassava roots have little HNL activity. The lack of HNL activity in roots is associated with the accumulation of potentially toxic levels of acetone cyanohydrin in poorly processed roots. We hypothesized that the over-expression of HNL in cassava roots under the control of a root-specific, patatin promoter would not only accelerate cyanogenesis during food processing, resulting in a safer food product, but lead to increased root protein levels since HNL is sequestered in the cell wall. Transgenic lines expressing a patatin-driven HNL gene construct exhibited a 2–20 fold increase in relative HNL mRNA levels in roots when compared with wild type resulting in a threefold increase in total root protein in 7 month old plants. After food processing, HNL overexpressing lines had substantially reduced acetone cyanohydrin and cyanide levels in roots relative to wild-type roots. Furthermore, steady state linamarin levels in intact tissues were reduced by 80% in transgenic cassava roots. These results suggest that enhanced linamarin metabolism contributed to the elevated root protein levels

    Author Correction: Drivers of seedling establishment success in dryland restoration efforts

    Get PDF
    1 Pág. Correción errata.In the version of this Article originally published, the surname of author Tina Parkhurst was incorrectly written as Schroeder. This has now been corrected.Peer reviewe

    Autonomous rock classification using Bayesian image analysis for Rover-based planetary exploration

    No full text
    A robust classification system is proposed to support autonomous geological mapping of rocky outcrops using grayscale digital images acquired by a planetary exploration rover. The classifier uses 13 Haralick textural parameters to describe the surface of rock samples, automatically catalogues this information into a 5-bin data structure, computes Bayesian probabilities, and outputs an identification.The system has been demonstrated using a library of 30 digital images of igneous, sedimentary and metamorphic rocks. The images are 3.5×3.5cm2 in size and composed of 256×256 pixels with 256 grayscale levels. They are first converted to gray level co-occurrence matrices which quantify the number of times adjacent pixels of similar intensity are present. The Haralick parameters are computed from these matrices. When all 13 parameters are used, classification accuracy, defined using an empirical scoring system, is 65% due to a large number of false positives. When the number of parameters and the choice of parameter is optimized, classification accuracy increases to 80%. The best results were achieved with 3 parameters that can be interpreted visually (angular second moment, contrast, correlation) together with two statistical parameters (sum of squares variance and difference variance) and a parameter derived from information theory (information measure of correlation II).The system has been kept simple not to draw excessive computational power from the rover. It could, however, be easily extended to handle additional parameters such as images acquired at different wavelengths

    Mars methane analogue mission: Mission simulation and rover operations at Jeffrey Mine and Norbestos Mine Quebec, Canada

    No full text
    The Canadian Space Agency (CSA), through its Analogue Missions program, supported a microrover-based analogue mission designed to simulate a Mars rover mission geared toward identifying and characterizing methane emissions on Mars. The analogue mission included two, progressively more complex, deployments in open-pit asbestos mines where methane can be generated from the weathering of olivine into serpentine: the Jeffrey mine deployment (J

    Do Bad Things Happen When Works Enter the Public Domain?: Empirical Tests of Copyright Term Extension

    No full text
    corecore