74 research outputs found

    Habitat creation for pollinators on farmland: a research update

    Get PDF
    Insects pollinate 80% of European plant species and are estimated to provide hundreds of millions of pounds worth of services for the UK economy. There is clear evidence showing declines in multiple insect pollinator species, as well as corresponding declines in the plant species that rely on them. Our understanding of pollinator systems is developing rapidly and investigations are being conducted into monitoring these losses, assessing the potential causes and possible methods of mitigation. This seminar will discuss these new developments in pollinator research and consider future directions

    Managing farmed landscapes for pollinating insects

    Get PDF
    Increasing floral resources and improving habitat conditions can benefit pollinating insect species, wildflowers and crop production

    Effects of habitat composition and landscape structure on worker foraging distances of five bumblebee species

    Get PDF
    Bumblebees (Bombus spp.) are important pollinators of both crops and wild flowers. Their contribution to this essential ecosystem service has been threatened over recent decades by changes in land use, which have led to declines in their populations. In order to design effective conservation measures it is important to understand the effects of variation in landscape composition and structure on the foraging activities of worker bumblebees. This is because the viability of individual colonies is likely to be affected by the trade-off between the energetic costs of foraging over greater distances and the potential gains from access to additional resources. We used field surveys, molecular genetics and fine resolution remote sensing to estimate the locations of wild bumblebee nests and to infer foraging distances across a 20 km2 agricultural landscape in southern England. We investigated five species, including the rare B. ruderatus and ecologically similar but widespread B. hortorum. We compared worker foraging distances between species and examined how variation in landscape composition and structure affected foraging distances at the colony level. Mean worker foraging distances differed significantly between species. Bombus terrestris, B. lapidarius and B. ruderatus exhibited significantly greater mean foraging distances (551 m, 536 m, 501 m, respectively) than B. hortorum and B. pascuorum (336 m, 272 m, respectively). There was wide variation in worker foraging distances between colonies of the same species, which was in turn strongly influenced by the amount and spatial configuration of available foraging habitats. Shorter foraging distances were found for colonies where the local landscape had high coverage and low fragmentation of semi-natural vegetation, including managed agri-environmental field margins. The strength of relationships between different landscape variables and foraging distance varied between species, for example the strongest relationship for B. ruderatus being with floral cover of preferred forage plants. Our findings suggest that favourable landscape composition and configuration has the potential to minimise foraging distances across a range of bumblebee species. There is thus potential for improvements in the design and implementation of landscape management options, such as agri-environment schemes, aimed at providing foraging habitat for bumblebees and enhancing crop pollination services

    Spatial ecology of a range-expanding bumble bee pollinator

    Get PDF
    Molecular methods have greatly increased our understanding of the previously cryptic spatial ecology of bumble bees (Bombus spp.), with knowledge of the spatial ecology of these bees being central to conserving their essential pollination services. Bombus hypnorum, the Tree Bumble Bee, is unusual in that it has recently rapidly expanded its range, having colonized much of the UK mainland since 2001. However, the spatial ecology of B. hypnorum has not previously been investigated. To address this issue, and to investigate whether specific features of the spatial ecology of B. hypnorum are associated with its rapid range expansion, we used 14 microsatellite markers to estimate worker foraging distance, nest density, between‐year lineage survival rate and isolation by distance in a representative UK B. hypnorum population. After assigning workers to colonies based on full or half sibship, we estimated the mean colony‐specific worker foraging distance as 103.6 m, considerably less than values reported from most other bumble bee populations. Estimated nest density was notably high (2.56 and 0.72 colonies ha−1 in 2014 and 2015, respectively), estimated between‐year lineage survival rate was 0.07, and there was no evidence of fine‐scale isolation by distance. In addition, genotyping stored sperm dissected from sampled queens confirmed polyandry in this population (mean minimum mating frequency of 1.7 males per queen). Overall, our findings establish critical spatial ecological parameters and the mating system of this unusual bumble bee population and suggest that short worker foraging distances and high nest densities are associated with its rapid range expansion

    Increasing flower species richness in agricultural landscapes alters insect pollinator networks: Implications for bee health and competition

    Get PDF
    Ecological restoration programs are established to reverse land degradation, mitigate biodiversity loss, and reinstate ecosystem services. Following recent agricultural intensification that led to a decrease in flower diversity and density in rural areas and subsequently to the decline of many insects, conservation measures targeted at pollinators have been established, including sown wildflower strips (WFS) along field margins. Historically successful in establishing a high density of generalist bees and increasing pollinator diversity, the impact of enhanced flower provision on wider ecological interactions and the structure of pollinator networks has been rarely investigated. Here, we tested the effects of increasing flower species richness and flower density in agricultural landscapes on bee‐plant interaction networks. We measured plant species richness and flower density and surveyed honeybee and bumblebee visits on flowers across a range of field margins on 10 UK farms that applied different pollinator conservation measures. We found that both flower species richness and flower density significantly increased bee abundance, in early and late summer, respectively. At the network level, we found that higher flower species richness did not significantly alter bee species' generality indices, but significantly reduced network connectance and marginally reduced niche overlap across honeybees and bumblebee species, a proxy for insect competition. While higher connectance and niche overlap is believed to strengthen network robustness and often is the aim for the restoration of pollinator networks, we argue that carefully designed WFS may benefit bees by partitioning their foraging niche, limiting competition for resources and the potential for disease transmission via shared floral use. We also discuss the need to extend WFS and their positive effects into spring when wild bee populations are established

    occAssess: an R package for assessing potential biases in species occurrence data

    Get PDF
    Species occurrence records from a variety of sources are increasingly aggregated into heterogeneous databases and made available to ecologists for immediate analytical use. However, these data are typically biased, i.e. they are not a probability sample of the target population of interest, meaning that the information they provide may not be an accurate reflection of reality. It is therefore crucial that species occurrence data are properly scrutinised before they are used for research. In this article, we introduce occAssess, an R package that enables straightforward screening of species occurrence data for potential biases. The package contains a number of discrete functions, each of which returns a measure of the potential for bias in one or more of the taxonomic, temporal, spatial, and environmental dimensions. Users can opt to provide a set of time periods into which the data will be split; in this case separate outputs will be provided for each period, making the package particularly useful for assessing the suitability of a dataset for estimating temporal trends in species' distributions. The outputs are provided visually (as ggplot2 objects) and do not include a formal recommendation as to whether data are of sufficient quality for any given inferential use. Instead, they should be used as ancillary information and viewed in the context of the question that is being asked, and the methods that are being used to answer it. We demonstrate the utility of occAssess by applying it to data on two key pollinator taxa in South America: leaf-nosed bats (Phyllostomidae) and hoverflies (Syrphidae). In this worked example, we briefly assess the degree to which various aspects of data coverage appear to have changed over time. We then discuss additional applications of the package, highlight its limitations, and point to future development opportunities

    Integrating data from different taxonomic resolutions to better estimate community alpha diversity

    Get PDF
    Integrated distribution models (IDMs), in which datasets with different properties are analysed together, are becoming widely used to model species distributions and abundance in space and time. To date, the IDM literature has focused on technical and statistical issues, such as the precision of parameter estimates and mitigation of biases arising from unstructured data sources. However, IDMs have an unrealised potential to estimate ecological properties that could not be properly derived from the source datasets if analysed separately. We present a model that estimates community alpha diversity metrics by integrating one species-level dataset of presence–absence records with a co-located dataset of group-level counts (i.e. lacking information about species identity). We illustrate the ability of community IDMs to capture the true alpha diversity through simulation studies and apply the model to data from the UK Pollinator Monitoring Scheme, to describe spatial variation in the diversity of solitary bees, bumblebees and hoverflies. The simulation and case studies showed that the proposed IDM produced more precise estimates of the community diversity than the single models, and the analysis of the real dataset further showed that the alpha diversity estimates from the IDM were averages of the single models. Our findings also revealed that IDMs had a higher prediction accuracy for all the insect groups in most cases, with this performance linked to the information provided by a data source into the IDM

    Bumblebee family lineage survival is enhanced in high quality landscapes

    Get PDF
    Insect pollinators such as bumblebees (Bombus spp.) are in global decline1,2, a major cause of which is habitat loss due to agricultural intensification3. A range of global and national initiatives aimed at restoring pollinator habitats and populations have been developed4-6. However, the success of these initiatives depends critically upon understanding how landscape change affects key population-level parameters, such as survival between lifecycle stages7, in target species. Such understanding is lacking for bumblebees because of the difficulty of systematically finding and monitoring colonies in the wild. We used a novel combination of habitat manipulation, land-use and habitat surveys, molecular genetics8 and demographic and spatial modelling to examine between-year survival of family lineages in field populations of three bumblebee species. Here we show that the survival of family lineages from the summer worker to the spring queen stage in the following year increases significantly with the proportion of high-value foraging habitat, including spring floral resources, within 250-1000 m of the natal colony. This is the first evidence of a positive impact of habitat quality on survival and persistence between successive colony cycle stages in bumblebee populations. The findings provide strong support for conservation interventions that increase floral resources at a landscape scale and throughout the season having positive effects on wild pollinators in agricultural landscapes

    Increasing flower species richness in agricultural landscapes alters insect pollinator networks: implications for bee health and competition

    Get PDF
    Ecological restoration programs are established to reverse land degradation, mitigate biodiversity loss, and reinstate ecosystem services. Following recent agricultural intensification that led to a decrease in flower diversity and density in rural areas and subsequently to the decline of many insects, conservation measures targeted at pollinators have been established, including sown wildflower strips (WFS) along field margins. Historically successful in establishing a high density of generalist bees and increasing pollinator diversity, the impact of enhanced flower provision on wider ecological interactions and the structure of pollinator networks has been rarely investigated. Here, we tested the effects of increasing flower species richness and flower density in agricultural landscapes on bee-plant interaction networks. We measured plant species richness and flower density and surveyed honeybee and bumblebee visits on flowers across a range of field margins on 10 UK farms that applied different pollinator conservation measures. We found that both flower species richness and flower density significantly increased bee abundance, in early and late summer, respectively. At the network level, we found that higher flower species richness did not significantly alter bee species' generality indices, but significantly reduced network connectance and marginally reduced niche overlap across honeybees and bumblebee species, a proxy for insect competition. While higher connectance and niche overlap is believed to strengthen network robustness and often is the aim for the restoration of pollinator networks, we argue that carefully designed WFS may benefit bees by partitioning their foraging niche, limiting competition for resources and the potential for disease transmission via shared floral use. We also discuss the need to extend WFS and their positive effects into spring when wild bee populations are established
    corecore