1,627 research outputs found

    Wind conditions and ventilation in high-rise long street models

    Get PDF
    We regarded high-rise cities as obstacles and channels to wind. We first studied wind conditions and ventilations in idealized high-rise long street models experimentally and numerically with a constant street width (W = 30 mm), variable street heights (H = 2 W, 2.5W, 3W, 4W), variable street lengths (L = 47.4W, 79W, 333W, 667W) and a parallel approaching wind. The flow rates penetrating into windward entries are a little larger than the reference flow rate in the far upstream free flow through the same area with windward entries in all models. The stream-wise velocity decreases along the street as some air leaves upwardly across street roofs. Near the leeward entry, there is a downward flow which brings some air into the street and results in an accelerating process. In the neighborhood scale long streets (L = 47.4W and 79W), wind in taller streets is stronger and the ventilation is better than a lower one. For the city scale long streets (L = 333W and 667W), a constant flow region exists where the vertical velocity is zero and the stream-wise velocity remains constant. In such regions, turbulent fluctuations across the street roof are more important to air exchange than vertical mean flows. In a taller street, the process to establish the constant flow conditions is longer and the normalized balanced horizontal flow rate is smaller than those in a lower street. In the city scale long streets, the turbulence exchange rate can be 5-10 times greater than the mean flow rate. Crown Copyright © 2009.postprin

    The coherent {\it d}-wave superconducting gap in underdoped La2x_{2-x}Srx_{x}CuO4_4 as studied by angle-resolved photoemission

    Full text link
    We present angle-resolved photoemission spectroscopy (ARPES) data on moderately underdoped La1.855_{1.855}Sr0.145_{0.145}CuO4_4 at temperatures below and above the superconducting transition temperature. Unlike previous studies of this material, we observe sharp spectral peaks along the entire underlying Fermi surface in the superconducting state. These peaks trace out an energy gap that follows a simple {\it d}-wave form, with a maximum superconducting gap of 14 meV. Our results are consistent with a single gap picture for the cuprates. Furthermore our data on the even more underdoped sample La1.895_{1.895}Sr0.105_{0.105}CuO4_4 also show sharp spectral peaks, even at the antinode, with a maximum superconducting gap of 26 meV.Comment: Accepted by Phys. Rev. Let

    Characterization of Pro-Inflammatory Flagellin Proteins Produced by Lactobacillus ruminis and Related Motile Lactobacilli

    Get PDF
    peer-reviewedLactobacillus ruminis is one of at least twelve motile but poorly characterized species found in the genus Lactobacillus. Of these, only L. ruminis has been isolated from mammals, and this species may be considered as an autochthonous member of the gastrointestinal microbiota of humans, pigs and cows. Nine L. ruminis strains were investigated here to elucidate the biochemistry and genetics of Lactobacillus motility. Six strains isolated from humans were non-motile while three bovine isolates were motile. A complete set of flagellum biogenesis genes was annotated in the sequenced genomes of two strains, ATCC25644 (human isolate) and ATCC27782 (bovine isolate), but only the latter strain produced flagella. Comparison of the L. ruminis and L. mali DSM20444T motility loci showed that their genetic content and gene-order were broadly similar, although the L. mali motility locus was interrupted by an 11.8 Kb region encoding rhamnose utilization genes that is absent from the L. ruminis motility locus. Phylogenetic analysis of 39 motile bacteria indicated that Lactobacillus motility genes were most closely related to those of motile carnobacteria and enterococci. Transcriptome analysis revealed that motility genes were transcribed at a significantly higher level in motile L. ruminis ATCC27782 than in non-motile ATCC25644. Flagellin proteins were isolated from L. ruminis ATCC27782 and from three other Lactobacillus species, while recombinant flagellin of aflagellate L. ruminis ATCC25644 was expressed and purified from E. coli. These native and recombinant Lactobacillus flagellins, and also flagellate L. ruminis cells, triggered interleukin-8 production in cultured human intestinal epithelial cells in a manner suppressed by short interfering RNA directed against Toll-Like Receptor 5. This study provides genetic, transcriptomic, phylogenetic and immunological insights into the trait of flagellum-mediated motility in the lactobacilli.This work was supported by a Principal Investigator Award (07/IN.1/B1780) from Science Foundation Ireland to PWOT. BAN was the recipient of an Embark studentship from the Irish Research Council for Science Engineering and Technology. TD and KN were supported by the Alimentary Pharmabiotic Centre, funded by Science Foundation Ireland

    Electronic structure near the 1/8-anomaly in La-based cuprates

    Full text link
    We report an angle resolved photoemission study of the electronic structure of the pseudogap state in \NdLSCO (Tc<7T_c<7 K). Two opposite dispersing Fermi arcs are the main result of this study. The several scenarios that can explain this observation are discussed.Comment: A high-resolution version can be found at http://lns.web.psi.ch/lns/download/Pockets/arXiv.pd

    Spectroscopic evidence for preformed Cooper pairs in the pseudogap phase of cuprates

    Full text link
    Angle-resolved photoemission on underdoped La1.895_{1.895}Sr0.105_{0.105}CuO4_4 reveals that in the pseudogap phase, the dispersion has two branches located above and below the Fermi level with a minimum at the Fermi momentum. This is characteristic of the Bogoliubov dispersion in the superconducting state. We also observe that the superconducting and pseudogaps have the same d-wave form with the same amplitude. Our observations provide direct evidence for preformed Cooper pairs, implying that the pseudogap phase is a precursor to superconductivity

    Scandinavian clinical practice guideline on fluid and drug therapy in adults with acute respiratory distress syndrome.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The objective of the Scandinavian Society of Anaesthesiology and Intensive Care Medicine (SSAI) task force on fluid and drug therapy in adults with acute respiratory distress syndrome (ARDS) was to provide clinically relevant, evidence-based treatment recommendations according to standards for trustworthy guidelines.The guideline was developed according to standards for trustworthy guidelines, including a systematic review of the literature and use of the GRADE methodology for assessment of the quality of evidence and for moving from evidence to recommendations.A total of seven ARDS interventions were assessed. We suggest fluid restriction in patients with ARDS (weak recommendation, moderate quality evidence). Also, we suggest early use of neuromuscular blocking agents (NMBAs) in patients with severe ARDS (weak recommendation, moderate quality evidence). We recommend against the routine use of other drugs, including corticosteroids, beta2 agonists, statins, and inhaled nitric oxide (iNO) or prostanoids in adults with ARDS (strong recommendations: low- to high-quality evidence). These recommendations do not preclude the use of any drug or combination of drugs targeting underlying or co-existing disorders.This guideline emphasizes the paucity of evidence of benefit - and potential for harm - of common interventions in adults with ARDS and highlights the need for prudence when considering use of non-licensed interventions in this patient population.Scandinavian Society of Anaesthesiology and Intensive Care Medicine (SSAI

    Species classifier choice is a key consideration when analysing low-complexity food microbiome data

    Get PDF
    peer-reviewedBackground The use of shotgun metagenomics to analyse low-complexity microbial communities in foods has the potential to be of considerable fundamental and applied value. However, there is currently no consensus with respect to choice of species classification tool, platform, or sequencing depth. Here, we benchmarked the performances of three high-throughput short-read sequencing platforms, the Illumina MiSeq, NextSeq 500, and Ion Proton, for shotgun metagenomics of food microbiota. Briefly, we sequenced six kefir DNA samples and a mock community DNA sample, the latter constructed by evenly mixing genomic DNA from 13 food-related bacterial species. A variety of bioinformatic tools were used to analyse the data generated, and the effects of sequencing depth on these analyses were tested by randomly subsampling reads. Results Compositional analysis results were consistent between the platforms at divergent sequencing depths. However, we observed pronounced differences in the predictions from species classification tools. Indeed, PERMANOVA indicated that there was no significant differences between the compositional results generated by the different sequencers (p = 0.693, R2 = 0.011), but there was a significant difference between the results predicted by the species classifiers (p = 0.01, R2 = 0.127). The relative abundances predicted by the classifiers, apart from MetaPhlAn2, were apparently biased by reference genome sizes. Additionally, we observed varying false-positive rates among the classifiers. MetaPhlAn2 had the lowest false-positive rate, whereas SLIMM had the greatest false-positive rate. Strain-level analysis results were also similar across platforms. Each platform correctly identified the strains present in the mock community, but accuracy was improved slightly with greater sequencing depth. Notably, PanPhlAn detected the dominant strains in each kefir sample above 500,000 reads per sample. Again, the outputs from functional profiling analysis using SUPER-FOCUS were generally accordant between the platforms at different sequencing depths. Finally, and expectedly, metagenome assembly completeness was significantly lower on the MiSeq than either on the NextSeq (p = 0.03) or the Proton (p = 0.011), and it improved with increased sequencing depth. Conclusions Our results demonstrate a remarkable similarity in the results generated by the three sequencing platforms at different sequencing depths, and, in fact, the choice of bioinformatics methodology had a more evident impact on results than the choice of sequencer did.This research was funded by Science Foundation Ireland in the form of a centre grant (APC Microbiome Institute grant number SFI/12/RC/2273). Research in the Cotter laboratory is also funded by Science Foundation Ireland through the PI award “Obesibiotics” (11/PI/1137). Orla O’Sullivan is funded by Science Foundation Ireland through a Starting Investigator Research Grant award (13/SIRG/2160)
    corecore