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a b s t r a c t

We regarded high-rise cities as obstacles and channels to wind. We first studied wind conditions and
ventilations in idealized high-rise long street models experimentally and numerically with a constant
street width (W ¼ 30 mm), variable street heights (H ¼ 2 W, 2.5W, 3W, 4W), variable street lengths
(L ¼ 47.4W, 79W, 333W, 667W) and a parallel approaching wind. The flow rates penetrating into
windward entries are a little larger than the reference flow rate in the far upstream free flow through the
same area with windward entries in all models. The stream-wise velocity decreases along the street as
some air leaves upwardly across street roofs. Near the leeward entry, there is a downward flow which
brings some air into the street and results in an accelerating process. In the neighborhood scale long
streets (L ¼ 47.4W and 79W), wind in taller streets is stronger and the ventilation is better than a lower
one. For the city scale long streets (L ¼ 333W and 667W), a constant flow region exists where the vertical
velocity is zero and the stream-wise velocity remains constant. In such regions, turbulent fluctuations
across the street roof are more important to air exchange than vertical mean flows. In a taller street, the
process to establish the constant flow conditions is longer and the normalized balanced horizontal flow
rate is smaller than those in a lower street. In the city scale long streets, the turbulence exchange rate can
be 5–10 times greater than the mean flow rate.

Crown Copyright � 2009 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Wind conditions in urban areas are very important in removing
or dispersing the airborne pollutants in urban canopies or providing
cleaner external (rural) air. In the main urban areas of Hong Kong
such as North Point, Causeway Bay, Central, and Sheung Wan (see
Fig. A1 in Appendix A), the street aspect ratio (building height/street
width, i.e. H/W) is mostly more than 2–4, sometimes exceeds 6 and
even reaches 10. The easterly prevailing wind in the atmospheric
boundary layer (ABL) may be seriously blocked in such packed high-
rise urban areas. A fraction of air may be driven out of the high-rise
urban canopy (see Fig. A2a).

Britter and Hanna [1] summarized studies of the flow in urban
areas into four scales, i.e. the regional scale (up to 100 or 200 km),
the city scale (up to 10 or 20 km), the neighborhood scale (up to 1 or
2 km) and the street scale (less than 100–200 m). The regional scale
[2] regards a city as a roughness of the atmosphere boundary layer
and emphasizes the regional effect of geographic and meteoro-
logical conditions on urban wind environment and regional
pollutant transportation in a large scale. The minimum grid size is
: þ852 2858 5415.
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several hundred meters without any flow information in a street/
building scale. Many investigations study the local turbulent flow in
a street scale or in a neighborhood scale, i.e. around isolated
buildings [3], in low-rise [4–6] and high-rise street canyon models
[7,8] and within finite groups of buildings [9–12]. These studies
used experimental measurements and/or numerical simulations by
large-eddy simulation (LES) or by Reynolds-averaged Navier–
Stokes (RANS) turbulence models, as reviewed by previous
researchers [1,13,14].

Our ultimate aim is to study wind conditions in a high-rise
packed city like Hong Kong in a city scale (up to 10 km). General
numerical techniques have difficulty in studying urban airflows in
a city scale because simulating airflows around thousands of
buildings requires an unaffordable grid number. For example,
a high-rise building array in a neighborhood scale with hundreds of
buildings generally requires tens of millions of grids and that in
a city scale with thousands of buildings requires billions of grids.
We regard the city with high-rise buildings and narrow streets as
blockages and pathways to the approaching wind. In this paper, we
first study wind conditions in high-rise long street models in
a neighborhood scale and in a city scale with a parallel approaching
wind (see Fig. A2a and b). In addition, the grid number in long
street models can be technically reduced because there are no
secondary streets and the grid size along the long street can be
rights reserved.
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large where the stream-wise gradients of flow variables is small.
The difference between these two models is that there are no
building height variations and no interactions at street intersec-
tions in the long street model.

When the street is long in contrast to its width and the
approaching wind is perpendicular to the street axis, the flow can
be treated as two-dimensional (2D). Many studies were performed
to study different vortex structures in different 2D street canyons
[4–8], probably because that the pollutants tend to stay a relatively
long time in such situation. Actually if the street is very long with
a parallel approaching wind, the pollutants may accumulate along
the street and the air in its downstream region may also be seri-
ously polluted. Soulhac et al. [15] developed a theoretical model for
studying wind profile in low-rise long streets (H/W ¼ 1 or 2) with
a parallel approaching wind. The long street models in this study
were assumed to be embedded in the fully developed region of
a long city and subsequently there were no end effects. Hang et al.
[16] performed both wind tunnel measurements and numerical
simulations to study the flow mechanism and ventilation flow rates
through a low-rise long street model (H/W ¼ 1, L/W ¼ 22). It was
found that a flow balance may exist in a very long low-rise street
when the vertical velocity component is nearly equal to zero and its
horizontal flow rate is a constant. When wind is blowing at angle
which is not parallel or perpendicular to the street axis, a helical
flow structure can be observed along the street [14,15]; i.e.
a combination of a longitudinal flow along the street and a mixing
recirculation flow.

This paper focuses on wind conditions and ventilation in the
high-rise long street models when the approaching wind is parallel
to the street axis. The street aspect ratios are more than 2 and the
street length is from a neighborhood scale to a city scale. We are
more interested in what happens in a city scale long street. For
example, the east-westerly straight Chang-a street in Beijing is
42 km long and some east-westerly streets along Hong Kong Island
also reach 10 km. Such long street models would reveal the
distance that wind can penetrate into the street, whether the wind
can blow through the entire long street or it may stop at some-
where, and what is the impact of the building height and the street
length.

2. Methodology

Idealized models which consist of five long streets were studied
(see Fig.1a) byassuming that the approaching wind blows parallel to
the long streets. In all the idealized models, the width of streets (W)
and width of buildings (B) are kept constant (W ¼ 30 mm,
B ¼ 40 mm), but the uniform height (H) of streets and length (L) of
streets vary in which the street aspect ratio (H/W) is 2, 2.5, 3 or 4, and
street length ratio (L/W) is 47.4, 79, 333 or 667. Computational fluid
dynamic (CFD) simulations were carried out to reproduce those
wind tunnel tests. These models are in 1:500 to the full scale
construction, i.e. corresponding to the street width of 15 m and the
street length of 0.7 km,1.2 km, 5 km or 10 km at the full scale. The two
length scales of 47.4W and 79W (or 0.7 km and 1.2 km at the full
scale) belong to the neighborhood scale, and the other two scales of
333W and 667W (or 5 km and 10 km at the full scale) correspond to
the city scale. There are totally 16 test cases. The cases are described
by Long [aspect ratio H/W, the street length ratio L/W]. That is, Long
[2, 47.4] will refer to a long street model in which the aspect ratio is
2 and the street length ratio is 47.4. Besides this case, the other
15 cases include Long [2.5, 47.4], Long [3, 47.4], Long [4, 47.4], Long
[2, 79], Long [2.5, 79], Long [3, 79], Long [4, 79], and some city scale
long street models, i.e. Long [2, 333], Long [2.5, 333], Long [3, 333],
Long [4, 333], Long [2, 667], Long [2.5, 667], Long [3, 667], Long
[4, 667]. In this study, both CFD simulations and wind tunnel
Please cite this article in press as: Hang J, et al., Wind conditions and ve
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measurements were employed for the neighborhood scale long
street models (L/W ¼ 47.4 or 79) but for the city scale long street
models (L/W ¼ 333 or 667), only CFD simulations were performed.

All the measurements were carried out in an aerodynamics
boundary layer wind tunnel (closed-circuit type) which is located
at the Laboratory of Ventilation and Air Quality, University of Gävle,
Sweden. The working section is 11 m long, 3 m wide and 1.5 m high.
There was no roughness element on the wind tunnel floor. The
velocity and turbulence intensity were measured by a hotwire
anemometry. For the measurement at each point, the measuring
frequency is 100 Hz and the measurement time is 30 s.

For the idealized models with a length of 47.4W and 79W (i.e.
Cases Long [2, 47.4], Long [2.5, 47.4], Long [3, 47.4], Long [4, 47.4],
Long [2, 79], Long [2.5, 79], Long [3, 79] and Long [4, 79]), as shown
in Fig. 1b, we measured vertical profiles (from wind tunnel floor to
a height of 10W above wind tunnel floor) at Point A (in Street A) and
Point C (in Street C) (i.e. locating at 15.4W from the leeward street
opening of each long street), as well as the horizontal profile along
the street axis of Street A at the height of z ¼ W above the wind
tunnel floor. Fig. 2 shows that vertical profiles of velocity and
turbulence intensity at Point A and Point C are almost the same, so
we only put forward the study of street A (surrounded by the dot
line in Fig. 1b) in CFD simulations such that symmetric half of Street
A domain was adopted so as to reduce calculation time.

For CFD simulations, the CFD code Fluent 6.3 was used with
both the standard k-3[17] and the RNG k-3 turbulence model [18]
to solve the incompressible steady and isothermal turbulent flow
field. The computation domain in Long [3, 47.4] is shown in Fig. 3a
as an example. At the domain inlet, turbulent kinetic energy k and
its dissipation rate 3 were calculated by vertical profiles of the
stream-wise velocity u(or the velocity V) and turbulence intensity
I measured in the far upstream free flow (Fig. 3b), using the
equations of k ¼ 1:5ðIuÞ2; 3 ¼ C3=4

m k3=4=lt , where Cm is a constant
(0.09) and lt is the turbulent characteristic length scale.

We should note that, the hotwire is only sensitive to velocity
components which are perpendicular to it (i.e. the vertical (z)
velocity w and the stream-wise (x) velocity u, see Fig. 3c). So the
velocity measured by the hotwire is actually the value of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þw2

p
.

In the upstream free flow, both span-wise (v) and vertical (w)
velocity components are zero, so the measured stream-wise
velocity (u) equals the local velocity ðV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2

p
Þ. Within

the long streets, because the hotwire in this study always locates
at the street center where the span-wise (y) velocity v is zero, the
measured velocity components

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þw2

p
also equals to the local

velocity ðV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 þw2

p
Þ.

Fig. 3d shows the grid generation near the long street model of
Long [3, 47.4]. The grid size in the stream-wise direction (dx) can be
large in regions far from the two street ends where the stream-wise
gradients are small. For example, the maximum grid size (dx) is 5W
in the city scale long street of Case Long [3, 667]. The number of
hexahedral cells generated for all CFD simulations were 151,950 to
258,804. The minimum mesh size near walls was 0.07W where no
slip wall boundary condition with standard wall functions [19] was
used. We used a zero normal gradient for all boundary variables at
the domain outlet, the domain roof and symmetry boundaries.

To quantify the variation of air motion, we normalized stream-
wise (x-axis) and vertical (z-axis) velocity components by stream-
wise velocity which was measured at the same height of the far
upstream plane. Volumetric flow rates through street openings,
along the street and across the street roof were used to evaluate the
capacity of pollutant dilution and air exchange by wind effect. And
a reference flow rate (QN) calculated by Eq. (1) was developed.
Then Eq. (1) was used in Eq. (2) for giving the normalized mean
flow rates across street openings and the street roof in Eq. (3) to
give the normalized effective flow rate due to turbulent exchange
ntilation in high-rise long street models, Building and Environment



Fig. 1. Views of long street models: (a) Three-dimensional (3D), (b) two-dimensional (2D).
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across the street roof. These factors were confirmed to be important
by Hang et al. [16]:

QN ¼ W
ZH

0

uNðzÞdz (1)

Q* ¼
Z

A

V
!

$ n!dA=QN (2)

Q*
turb � ¼ �

Z

Aroof

0:5swdA=QN (3)

where in Eq. (1), uNðzÞ is the measured vertical profile of stream-
wise velocity in the far upstream free flow as illustrated in Fig. 3b,
Please cite this article in press as: Hang J, et al., Wind conditions and ve
(2010), doi:10.1016/j.buildenv.2009.11.019
and W is the street width of street entries. The reference flow rate QN

is the flow rate of the far upstream free flow through the same area
with street entries. When the height (H) of street entries increases
(i.e. taller buildings), the reference flow rate also increases. In Eq. (2),
V
!

is velocity vector, n! is the normal direction of openings or the
street roof, A is the area of the street roof or openings. In Eq. (3),
Q*

turb � represents the normalized effective flow rates across the
street roof due to the upward and downward turbulence fluctua-
tions. Aroof is the area of the street roof. sw ð

ffiffiffiffiffiffiffiffiffiffiffi
w0w0

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
2k=3

p
Þ is the

vertical velocity fluctuation across the street roof based on the
approximation of isotropic turbulence (u

0 ¼ v
0 ¼ w

0
) where u

0
,v
0
,w

0

are the stream-wise, span-wise, vertical velocity fluctuations and k
is turbulent kinetic energy. The constant 0.5 means that the effective
upward and downward flow rates due to turbulence fluctuation
across the street roof are the same value (i.e. 0.5 sw for upward flux
and 0.5 sw for downward flux).
ntilation in high-rise long street models, Building and Environment
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As reported in Hang et al. [16], there is a region with constant
flow conditions in a long street low-rise model. In such a region, the
pressure gradients may be very small. The downward transport of
momentum by turbulent shear stress acts as an important motor of
the forward flow. The opposing frictions on street walls and the
street ground mainly contribute to the removal of momentum
along the streets. In the region where the flow are fully developed,
the above two factors may be kept constant along the street. To
display this condition in a sufficiently long street, we utilized the
horizontal profile of the downward turbulent shear stress compo-
nent sxz (see Eq. (4)). In regions where the flow is fully developed,
not only the flow variables of velocity components and turbulent
quantities but also the shear stress components keep constant in
the stream-wise direction.

sxz ¼ ðmþ mtÞ
d u
dz

(4)

where m and mt are molecular viscosity and turbulent viscosity.
From the mass balance, the total flow rate entering (Q in) and

leaving (Qout) the street volume through street entries and the street
roof by mean flows should be the same. We named them as QT:

Q T ¼ Q in ¼ Q out (5)
Please cite this article in press as: Hang J, et al., Wind conditions and ve
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The air change rate (air exchange per hour for a control volume-
ACH) is widely used in indoor ventilation problems to show the
ventilation capacity of a room by airflows through supplies and
exhausts, windows and doors. We also used it to study ventilation
in high-rise long street models. The air change rates due to the total
mean flow rates and the effective flow rate due to turbulent
exchange across the street roof were defined as

ACH ¼ 3600Q T=vol (6)

ACH turb ¼ 3600Qturb=vol (7)

where vol is the control volume of the long street, 3600 means that
1 h is 3600 s.

3. Results and discussion

3.1. Evaluation of CFD simulations by wind tunnel data

Fig. 4 shows the evaluation of CFD simulation results by wind
tunnel data using some example horizontal profiles (see Fig 4a and
b) along the street axis at the height of z¼W or vertical profiles (see
Fig. 4c and d) at Point A. We find that both the standard k-e model
and the RNG k-e model can predict the velocity profiles generally
well, however the turbulence intensity is under-predicted along
the street. The following discussion and analysis will be based on
the results from the RNG k-e model only. As illustrated in Fig. 4a and
b, both numerical results and wind tunnel data reveal the process of
wind flowing through the long street models (x/W ¼ 0 is the
windward street entry). The velocity first decreases in the wind-
ward side (x/W < 0) of the long street models, then an accelerating
process exists across the windward street entry, followed by
a velocity reduction as deeper into the long street models, and
finally the velocity increases a little near the leeward opening of the
long street models. The turbulence intensity in the leeward side of
the long street models (i.e. in the wake region) is very large. The
following analysis will discuss the flow mechanisms and wind
conditions in such long street models in more detail.

3.2. Effect of aspect ratio in neighborhood scale long street
models (L/W ¼ 47.4)

The questions to be answered here are whether the flow can be
fully developed in the neighborhood scale long street models and
its flow mechanisms as well as the effect of the street aspect ratio.

Fig. 5a and b show the three-dimensional (3D) streamline
near the windward and leeward street entries in Long [3, 47.4].
Fig. 5c and d show the horizontal profiles of the normalized
stream-wise and vertical velocity along the street centerlines at
roof levels (i.e. 2W, 3W or 4W) and at the height of z ¼ W in Long
[2, 47.4], Long [3, 47.4] and Long [4, 47.4]. The location of x/W ¼ 0
is the windward street entry. As approaching the windward
entry, wind is blocked and displaced by the solid city, so in the
region of x/W from �10 to �1, the stream-wise velocity decreases
(see Fig. 5c). In front of the windward street entry, Fig. 5a shows
that wind penetrates into the windward entry and there is an
upward flow across the street roof. Across the windward street
entry(x/W from �1 to 0.5), Fig. 5c shows an acceleration of the
stream-wise velocity and this acceleration process is the stron-
gest in Long [4, 47.4] and the smallest in Long [2, 47.4]. The
normalized stream-wise velocity at the windward street entry
(x ¼ 0) is a little more than 1.0 and its maximum value appears at
about x ¼ 0.5W. Fig. 5d shows that the vertical velocity near the
windward street entry (x ¼ 0) is very large at the roof levels
(z ¼ H ¼ 2W, 3W or 4W) and is relatively small at the height of
ntilation in high-rise long street models, Building and Environment



Fig. 3. (a) Computational domain in Long [3, 47.4]. (b) Vertical profiles of velocity and turbulence intensity measured in far upstream free flow in wind tunnel data. (c) An
illustration of measuring velocity using the hotwire. (d) The grid generation near the long street model of Long [3, 47.4].
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z ¼ W. We also find that the positive vertical velocity at the street
roof level (z ¼ 4W) of Long [4, 47.4] is larger than that at the roof
level (z ¼ 2W) in Long [2, 47.4], however at the height of z ¼ W
near the windward entry(x ¼ 0), the vertical velocity in Long [4,
47.4] is less than that in Long [2, 47.4]. To explain such kinds of
phenomenon near the street windward entry, Fig. 5e–g show 2D
streamline and distribution of static pressure, the stream-wise
velocity and the vertical velocity in the plane of x ¼ �0.003W (i.e.
near the windward street entry) in Long [2, 47.4] and Long [4,
47.4]. The approaching airflow is stagnated by the windward
Please cite this article in press as: Hang J, et al., Wind conditions and ve
(2010), doi:10.1016/j.buildenv.2009.11.019
walls and static pressure in the stagnation region is high. Fig. 5e
shows that the maximum pressure on the taller windward walls
in Long [4, 47.4] is about 55 pa which exceeds that in Long [2,
47.4] (i.e. 45 Pa). In addition, the center of stagnation region in
Long [4, 47.4] is at about z ¼ 3.2W which is much taller than that
in Long [2, 47.4] (about z ¼ 1.6W). The stagnated airflow on the
windward walls is diverged into three kinds of flows along the
wall surfaces due to the pressure gradient, i.e. an upward flow
from the stagnation region to the roof level, a lateral flow from
the stagnation region to the street entry, a downward flow from
ntilation in high-rise long street models, Building and Environment



-10 0 10 20 30 40 50 60
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0
T

he
 n

or
m

al
iz

ed
 v

el
oc

it
y

x /W

 A long the street centreline at height of 
z=W  in Long [2, 47.4]

 W ind tunnel data
 CFD results(standard k-  model)
 CFD results(RNG k-  m odel)

-10 0 10 20 30 40 50 60
0,0

0,1

0,2

0,3

0,4

0,5

T
ur

bu
le

nc
e 

in
te

ns
it

y

x/W

 Along the street centreline at height of
z=W  in Long [2, 47.4]

 Wind tunnel data
 CFD results(standard k-  model)
 CFD results(RNG k-  model)

-10 0 10 20 30 40 50 60
0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

T
he

 n
or

m
al

iz
ed

 v
el

oc
it

y

x /W

 A long the street centreline at height of 
z=W  in Long [3, 47.4]

 W ind tunnel data
 CFD results(standard k-  m odel)
 CFD results(RNG k-  m odel)

-10 0 10 20 30 40 50 60
0,0

0,1

0,2

0,3

0,4

0,5

T
ur

bu
le

nc
e 

in
te

ns
it

y

x/W

 Along the street centreline at height of
z=W  in Long [3, 47.4]

 Wind tunnel data 
 CFD results(standard k-  model)
 CFD results(RNG k-  model)

0 2 4 6 8 10 12 14 16 18
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

at roof level H=2.5W

Vertical profile at Point A 
in Long [2.5, 47.4]

 Wind tunnel data
 standard k- model
 RNG k-  model

z
/ W

Velocity (m/s)
0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

.

at roof level H=2.5W

Vertical profile at Point A
in Long [2.5, 47.4]

 Wind tunnel data
 standard k-  model
 RNG k-  model

z
/ W

Turbulence intensity

0 2 4 6 8 10 12 14 16 18
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

at roof level H=2.5W

Vertical profile at Point A 
in Long [2.5, 79]

 Wind tunnel data
 standard k-  model
 RNG k-  model

z
/ W

Velocity (m/s)
0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

at roof level H=2.5W

Vertical profile at Point A
in Long [2.5, 79]

 Wind tunnel data
 standard k-  model
 RNG k-  model

z
/ W

Turbulence intensity

a

b

c

d
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Fig. 5. (a) 3D streamline near the windward entry in Long [3, 47.4], (b) 3D streamline near the leeward entry in Long [3, 47.4]. Horizontal profiles along street centerlines in Long [2,
47.4], Long [3, 47.4] and Long [4, 47.4] at street roof levels (i.e., z ¼ H ¼ 2W or 3W or 4W) and z ¼W: (c) normalized stream-wise velocity and (d) normalized vertical velocity. Two-
dimensional streamline and distribution of variables in plane of x ¼ �0.003W (i.e. near windward street entry) in Long [2, 47.4] and Long [4, 47.4]: (e) static pressure (pa), (f) stream-
wise velocity (m/s) and (g) vertical velocity (m/s). In horizontal profiles, x ¼ 0 denotes the location of the windward street entry.
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the stagnation region to the ground. Contrast to Long [2, 47.4], more
air parcels are blocked by the taller windward walls in Long [4, 47.4].
As a result, more air parcels are driven laterally to enter the wind-
ward street entry in Long [4, 47.4] than those in Long [2, 47.4] which
can be confirmed by the larger stream-wise velocity in Long [4, 47.4]
(see Fig. 5f), meanwhile, the upward flow (the positive vertical
velocity) near the roof level in Long [4, 47.4] and the downward flow
(the negative vertical velocity) near the ground are stronger than
those in Long [2, 47.4] (see Fig. 5g). These facts are consistent with
the above findings in Fig. 5c–d.
Please cite this article in press as: Hang J, et al., Wind conditions and ve
(2010), doi:10.1016/j.buildenv.2009.11.019
The normalized flow rate (Q*) entering the windward street
entry is a little more than 1.0 (see Table 1). Then some air parcels
leaves the street volume across the street roof, which can be seen
by the positive vertical velocity along the street (see Fig. 5d). As
a result, the stream-wise velocity decreases (see Fig. 5c) along the
street. Behind the leeward street entry (x ¼ 47.4W), the resistance
of street walls suddenly disappears and turbulent shear stress may
transport more momentums downwardly. The downward motion
across the street roof of this region brings some air parcels into the
street volume which can be seen by both the flow visualization in
ntilation in high-rise long street models, Building and Environment
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Fig. 5b and the negative vertical velocity in Fig. 5d, as a result the
stream-wise velocity increases a little near the leeward street entry
(at x ¼ 47.4W, see Fig. 5c). In these neighborhood scale long street
models (see Fig. 5c–d), the vertical velocity is positive, and the
stream-wise velocity keeps decreasing until a region near the
leeward street entry.
Table 1
Important parameters for fully developed region of long street models with different
aspect ratios.

Aspect ratio H/W ¼ 2 H/W ¼ 2.5 H/W ¼ 3 H/W ¼ 4

Reference flow rate
QN (m3/s)

0.014 0.018 0.023 0.032

Area of windward entry(m2) 0.0018 0.00225 0.0027 0.0036
Q* at the windward entry 1.02 1.04 1.06 1.09
Lf 100W 140W 220W 420W
Q* in the fully developed

region
0.43 0.38 0.33 0.27

Vf* along the street
centreline at z ¼ W

0.41 0.30 0.23 0.14

Vf* along the street
centreline at z ¼ H

0.71 0.68 0.68 0.70

Note: Lf is the approximate distance from the windward opening to the starting
point of the fully developed region; Vf* is the normalized stream-wise velocity in the
fully developed region.

Please cite this article in press as: Hang J, et al., Wind conditions and ve
(2010), doi:10.1016/j.buildenv.2009.11.019
The important findings here are that the taller long street
models may capture more air parcels into the street volume for city
ventilation. In addition, the flow cannot be fully developed along
a neighborhood scale long street model, so the flow rate along the
street always varies. Then we will study the flow in the city scale
long street models.
3.3. Effect of street length in long streets with the same aspect
ratio (H/W ¼ 2)

We also studied what happens if the street length increases
from a neighborhood scale (L/W ¼ 47.4 or 79) to a city scale
(L/W ¼ 333).

Fig. 6 shows that the horizontal profiles of four variables along
the street centerlines in Long [2, 47.4], Long [2, 79], Long [2, 333].
The horizontal profiles of all the variables are almost the same in
the upstream region (�10 < x/W < 35), showing that wind in the
upstream region (�10 < x/W < 35) is affected little when the
street length changes. Most importantly, there is an obvious fully
developed region existing in the city scale long street model (Long
[2, 333]), where all the variables keep constant. The flow variables
along the street centerlines at z ¼ 2W (the street roof level) seems
to become steady earlier than those at z ¼ W, because the former
ntilation in high-rise long street models, Building and Environment
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Fig. 6. Horizontal profiles along street centerlines: (a) normalized stream-wise velocity, (b) normalized vertical velocity, (c) normalized velocity fluctuation, (d) shear stress
component sxz in Long [2, 47.4], Long [2, 79], Long [2, 333]. x ¼ 0 denotes the location of the windward street entry.
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is affected by the shear stress of the external flow above the street
roof more directly. We define the location of x/W ¼ 100 as the
approximate beginning point of the fully developed region. In this
region, the downward momentum shear stress component is
nearly positive constant which act as a motor for the constant
stream-wise motion along the street (see Fig. 6a and d). In addi-
tion, the vertical velocity is nearly zero (see Fig. 6b) and the
vertical velocity fluctuation ðsw ¼

ffiffiffiffiffiffiffiffiffiffiffi
w0w0

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
2k=3

p
Þ is not zero

(see Fig. 6c), confirming that turbulent fluctuation across street
roofs is more important than mean flows for air exchange in the
fully developed region. Near the leeward street entry (x/W ¼ 47.4,
79 or 333), some air enters the street volume downwardly (i.e. the
negative vertical velocity in Fig. 6b) across street roofs, resulting in
an accelerated process of the stream-wise velocity (see Fig. 6a).

3.4. Effect of aspect ratio in city scale long street models
(L/W ¼ 333 or 667)

Since it’s confirmed that there is a fully developed region in
a city scale long street model with the aspect ratio of 2, we here aim
to study what happens in a city scale long street model (L/W ¼ 333
or 667) when the model become taller.

Fig. 7 shows that the horizontal profiles of the stream-wise
velocity and the velocity fluctuation along the street centerlines in
Long [2, 333], Long [2.5, 333], Long [3, 333] and Long [4, 333]. We find
that, the starting point of the fully developed region in Long [2.5,
333] is about x ¼ 140W and that in Long [3, 333] is about x ¼ 220W.
Please cite this article in press as: Hang J, et al., Wind conditions and ve
(2010), doi:10.1016/j.buildenv.2009.11.019
The normalized stream-wise velocities in the fully developed region
along the street centerlines at the height of z ¼W in Long [2, 333],
Long [2.5, 333], Long [3, 333] are about 0.41, 0.30, 0.23, and those at
the height of z ¼ H (i.e. roof levels) are about 0.70, 0.68, 0.68.
These facts confirm that, in the fully developed region of long street
models with different aspect ratios, wind at the street roof level
almost keeps a steady relation to wind in the far upstream free flow
at the same height level, however wind far below the street roof (i.e.
at z ¼ W) may be various and it becomes weaker in a taller long
street. In the fully developed region, the velocity fluctuation at z¼W
in a taller long street is also weaker than that in a lower one. In Long
[4, 333], it is difficult to conclude that a constant flow condition
exists because the points where the stream-wise velocity stops
decreasing are near the leeward street entry.

To show the process to set up a constant flow condition in the
long street model with an aspect ratio of 4, we studied a longer street
model (Long [4, 667]). Fig. 8 shows the horizontal profiles in Long [3,
333], Long [4, 333], Long [3, 667] and Long [4, 667]. It’s found that, for
the long street model with an aspect ratio of 4, the constant flow
conditions of the stream-wise velocity and the velocity fluctuation
in Long [4, 667] start at about x/W ¼ 420. The normalized stream-
wise velocity at the height of z ¼ W in the fully develop region of
Long [4, 667] is about 0.14, which is smaller than that in Long [3, 667]
(i.e. 0.23). In the same region, the velocity fluctuation at z ¼ W in
Long [4, 667] is also smaller than that in Long [3, 667].

The important findings here are that there is always a fully
developed region with constant flow conditions if the street is
ntilation in high-rise long street models, Building and Environment
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Fig. 7. Horizontal profiles along street centerlines: (a) normalized stream-wise
velocity, (b) normalized velocity fluctuation in Long [2, 333], Long [2.5, 333], Long [3,
333], Long [4, 333]. x ¼ 0 denotes the location of the windward street entry.
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sufficiently long and the positive stream-wise flow never stops. The
street aspect ratio has an important impact on the balance flow rate
and the distance to reach a balance. We summarized all the
important parameters for the city scale long street models in Table
1. The normalized flow rate through the windward street entry is
a little more than 1.0 for all the models. The approximate distances
from the windward entry to the starting point of the fully devel-
oped region (Lf) and the normalized horizontal flow rates (Q*) in
the fully developed region are different: If the long street model
become taller, the distance (Lf) for establishing the constant flow
conditions increases (i.e. Lf/W ¼ 100, 140, 220, 420) and the
normalized horizontal flow rate in the fully developed region
decreases (i.e. Q*¼ 0.43, 0.38, 0.33, 0.27). The normalized velocities
along the street centerlines in the fully developed region (Vf*) at
roof levels z ¼ H are affected little by the street height (i.e. about
0.7), however, those (Vf *) at z ¼W decrease (i.e. from 0.41 to 0.14)
with the increasing street height.

3.5. Analysis of ventilation flow rates and air exchange rates

Flow rates across street roofs are important for the flow rate
flushing through the street volume for pollutant dilutions. The air
change rate may show the ventilation capacity which is decided by
the magnitude of the street volume and the flow rates through
Please cite this article in press as: Hang J, et al., Wind conditions and ve
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street openings and street roofs due to mean flows and turbulent
fluctuations.

Fig. 9 shows the normalized vertical flow rates by upward
motion, downward motion and their total effect, as well as the
effective flow rate due to turbulent exchange across the street roof
in all the test cases. For the long street models with the same aspect
ratio, Fig. 9a shows that, since the constant flow conditions is not
established for the neighborhood scale models (47.4W or 79W), the
upward flow rate increases a little and more air parcels continue
leaving the street volume upwardly when the street length
increases (i.e. from 47.4W to 79W). Similarly the downward flow
rate also increases a little as the street length increases from 47.4W
to 79W, because the strength of downward motion near the
leeward entry is affected by the strength of upward motion in its
upstream region and such upward motion may become weaker
when the constant flow condition has not been established but the
street becomes longer. The extreme example of such situation is
that (see Fig. 9a), the downward flow rates in the city scale long
street models (333W or 667W) may be several times of those in the
neighborhood scale long street models. For those city scale long
street models with aspect ratios of 2, 2.5, and 3, when the street
become longer (from 333W to 667W), both the upward and
downward flow rates across the street roof change little. It confirms
that no more air parcels leave upwardly or enter downwardly
ntilation in high-rise long street models, Building and Environment
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across the street roof when the city scale street length increases. For
Long [4, 667] and Long [4, 333], the upward and downward flow
rates change a little because the flow balance is not established in
Long [4, 333]. Fig. 9b shows that for all the long street models with
the same height, the effective flow rate due to turbulent exchange
across the street roof almost keeps the same increasing rate with
the increasing street length. For the neighborhood scale long street
models, the effective flow rate due to such turbulent exchange is
the same order with those due to the total vertical mean flows
(upward and downward), however in the city scale long street
models, the former may be many times of the latter.

Fig. 10 shows the air change rates (ACH) by the total mean
flow rates through openings and the street roof and that due to
turbulent exchange across the street roof. The air change rates for
these models are very large because the idealized models in wind
tunnel are small. For the street models with the same height, ACH
by the total mean flow rates decreases quickly when the street
becomes longer. It is because that the control street volume
increases at the same rate with the increasing street length but
the total mean flow rates only change a little. For example, ACH
by the total mean flow rates in those models with the street
length of 667W are almost half of those with the street length of
333W. ACH due to turbulent exchange across the street roof
Please cite this article in press as: Hang J, et al., Wind conditions and ve
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change little when the street length changes from 333W to 667W
and they are much larger than those due to the total mean flow
rates. In the city scale long street models, the air change rate due
to turbulence fluctuations can be 5–10 times greater than that
due to the mean flows.
4. Conclusion

We studied wind conditions in the neighborhood scale or city scale
long street models with aspect ratios of 2–4. The models act as
obstacles and pathways to the parallel approaching wind. CFD simu-
lations were evaluated by wind tunnel data, then we analyzed the
flow mechanisms and ventilation capacity in these long street models.

It’s found that taller street models may capture more air parcels
at the windward entry and the normalized penetrating flow rate
through it is a little more than 1.0 for all street models. As deeper into
the long street, a significant amount of air leaves the street volume
upwardly across the street roof, as a result the stream-wise velocity
decreases along the street. If the street models are sufficiently long,
this process continues until that a constant flow condition is
established in the fully developed region where the stream-wise
velocity keeps constant and the vertical velocity is zero. In such
a region, when the model become taller, wind at the roof level
change little but wind far below the roof level is weakened, as
a result, the balance flow rate is smaller in a taller long street model.
In addition, the distance to establish such a flow balance in the taller
model is much longer than that in the lower one. Near the leeward
street entry, a downward flow across the street roof appears and the
flow rate along the street model increases a little.

For the neighborhood scale long street models, the air change
rate by mean flows is much larger than that in a city scale one
because the smaller street volume in the former. In addition, in the
neighborhood scale long street models, turbulence fluctuation
across street roofs contribute to air exchange the same order with
that due to mean flows across street entries and street roofs.
However in the city scale long street models, the turbulence
exchange rate can be 5–10 times greater than the mean flow rate. It
confirms that turbulent exchange across the street roof is more
important to air exchange in the city scale long street models.

The wind reduction and characteristics of ventilation in all these
long street models has important implication to city ventilation in
a high-rise long city like Hong Kong. This paper confirms that, since
people have to build tall buildings in the crowded urban area of
ntilation in high-rise long street models, Building and Environment
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Hong Kong, the urban design of tall buildings is not the definitely
worse choice for the city ventilation. The ventilation capacity is
decided not only by the building height but also the total city length
and the street width. A good choice is to build taller buildings and
wider streets to capture more air into the street network for city
ventilation, at the same time, to utilize some large open space like
gardens, football fields, parks etc to separate a continuously city
scale (up to 10 km) built-up urban area into several neighborhood
scale (up to 1–2 km) urban areas.
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Nomenclature

A, Aroof area of street openings and the street roof
ACH, ACHturb air change rate by mean flows and due to turbulent

exchange on street roofs
H, L, W street height, street length and street height
k, 3 turbulent kinetic energy and its dissipation rate
Fig. A.1 A map of buildings in some urban areas of Hong Kong (from

Inflow

U

Inflow

U

a

b

Fig. A.2 An idealized box model of urban ventilation: (a) For an urban canopy
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I turbulence intensity
lt turbulent characteristic length scale
sw verticalvelocity fluctuation
n! normal direction of street opening or the street roof
p static pressure
QN reference flow rate far upstream
Q* normalized flow rate through street openings or the

street roof
Q�turb� normalized effective flow rate through street roofs due to

turbulent exchange
u,v,w stream-wise, span-wise and vertical velocity components

in x, y, z directions
u
0
,v
0
,w

0
stream-wise, span-wise, vertical velocity fluctuations

uN horizontal velocity far upstream
V
!

, V velocity vector and velocity magnitude
vol control street volume
Lf , Vf * approximate distance fromwindward entries to starting

point of fully developed region and normalized stream-
wise velocity in this region.

r density of air
m, mt molecular viscosity and turbulent viscosity
x, y, z stream-wise, span-wise and vertical directions
sxz downward turbulent shear stress component
Appendix A. A map of buildings in some urban areas of Hong
Kong and a corresponding idealized box model with groups of
buildings and street network or a long street model
the Department of Geography, the University of Hong Kong).

Outflow

pward flow

Outflow

pward flow

with groups of buildings and street networks, (b) for a long street model.
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