18 research outputs found

    Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics

    Get PDF
    Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.</p

    Multicenter benchmarking of short and long read wet lab protocols for clinical viral metagenomics

    Get PDF
    Metagenomics is gradually being implemented for diagnosing infectious diseases. However, in-depth protocol comparisons for viral detection have been limited to individual sets of experimental workflows and laboratories. In this study, we present a benchmark of metagenomics protocols used in clinical diagnostic laboratories initiated by the European Society for Clinical Virology (ESCV) Network on NGS (ENNGS). A mock viral reference panel was designed to mimic low biomass clinical specimens. The panel was used to assess the performance of twelve metagenomic wet lab protocols currently in use in the diagnostic laboratories of participating ENNGS member institutions. Both Illumina and Nanopore, shotgun and targeted capture probe protocols were included. Performance metrics sensitivity, specificity, and quantitative potential were assessed using a central bioinformatics pipeline. Overall, viral pathogens with loads down to 104 copies/ml (corresponding to CT values of 31 in our PCR assays) were detected by all the evaluated metagenomic wet lab protocols. In contrast, lower abundant mixed viruses of CT values of 35 and higher were detected only by a minority of the protocols. Considering the reference panel as the gold standard, optimal thresholds to define a positive result were determined per protocol, based on the horizontal genome coverage. Implementing these thresholds, sensitivity and specificity of the protocols ranged from 67 to 100 % and 87 to 100 %, respectively. A variety of metagenomic protocols are currently in use in clinical diagnostic laboratories. Detection of low abundant viral pathogens and mixed infections remains a challenge, implying the need for standardization of metagenomic analysis for use in clinical settings.</p

    Prothrombotic and Proinflammatory Activities of the β-Hemolytic Group B Streptococcal Pigment

    Get PDF
    A prominent feature of severe streptococcal infections is the profound inflammatory response that contributes to systemic toxicity. In sepsis the dysregulated host response involves both immunological and nonimmunological pathways. Here, we report a fatal case of an immunocompetent healthy female presenting with toxic shock and purpura fulminans caused by group B streptococcus (GBS; serotype III, CC19). The strain (LUMC16) was pigmented and hyperhemolytic. Stimulation of human primary cells with hyperhemolytic LUMC16 and STSS/NF-HH strains and pigment toxin resulted in a release of proinflammatory mediators, including tumor necrosis factor, interleukin (IL)-1β, and IL-6. In addition, LUMC16 induced blood clotting and showed factor XII activity on its surface, which was linked to the presence of the pigment. The expression of pigment was not linked to a mutation within the CovR/S region. In conclusion, our study shows that the hemolytic lipid toxin contributes to the ability of GBS to cause systemic hyperinflammation and interferes with the coagulation system

    Recommendations for the introduction of metagenomic high-throughput sequencing in clinical virology, part I: Wet lab procedure

    Get PDF
    Metagenomic high-throughput sequencing (mHTS) is a hypothesis-free, universal pathogen detection technique for determination of the DNA/RNA sequences in a variety of sample types and infectious syndromes. mHTS is still in its early stages of translating into clinical application. To support the development, implementation and standardization of mHTS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mHTS for viral diagnostics to share methodologies and experiences, and to develop application recommendations. This manuscript aims to provide practical recommendations for the wet lab procedures necessary for implementation of mHTS for virus diagnostics and to give recommendations for development and validation of laboratory methods, including mHTS quality assurance, control and quality assessment protocols

    Coexistence of multiple PCR-ribotype strains of Clostridium difficile in faecal samples limits epidemiological studies

    No full text
    Clostridium difficile is an important cause of antibiotic-associated diarrhoea. The simultaneous presence of different strains in individual faecal samples has not yet been established, but is important for epidemiological studies. Recurrences of Clostridium difficile-associated diarrhoea (CDAD) are observed in 15-20% of patients and have been reported as relapses or reinfections with a new strain. In a period of 1 year, 28 faecal samples from 23 patients with a first episode of CDAD were collected at the Leiden University Medical Centre. In addition, 52 faecal samples from 23 patients, from three different hospitals, with one (n = 19), two (n = 2) or three (n = 2) recurrences were studied. PCR-ribotyping was applied as the standard typing method for the isolates. The toxinogenic and clindamycin-resistance profiles of the isolates was determined by PCR. Of 23 patients with a first episode of CDAD, two (8.7%) harboured two different types, with no differences in toxinogenicity or clindamycin resistance, within one faecal sample. One of these 23 patients showed two types in three faecal samples from the same episode. Of the 23 patients with recurrences, six (26%) showed a different strain type isolated in a recurrent episode. The number of cases of multiple C. difficile strains in faecal samples from patients with a first episode of CDAD did not differ significantly from the number of different strains present in recurrent episodes (chi-square test, P ≤ 0.2). This observation limits the application of typing methods for studying the epidemiology of CDAD

    Multicenter evaluation of the QIAstat-Dx® Respiratory Panel V2 for the detection of viral and bacterial respiratory pathogens

    No full text
    QIAstat-Dx Respiratory Panel V2 (RP) is a novel molecular-method-based syndromic test for the simultaneous and rapid (∼70-min) detection of 18 viral and 3 bacterial pathogens causing respiratory infections. This report describes the first multicenter retrospective comparison of the performance of the QIAstat-Dx RP assay to the established ePlex Respiratory Pathogen Panel (RPP) assay, for which we used 287 respiratory samples from patients suspected with respiratory infections. The QIAstat-Dx RP assay detected 312 (92%) of the 338 respiratory targets that were detected by the ePlex RPP assay. Most of the discrepant results have been observed in the low-pathogen-load samples. In addition, the QIAstat-Dx RP assay detected 19 additional targets in 19 respiratory samples that were not detected by the ePlex RPP assay. Nine of these discordant targets were considered to represent true positives after discrepancy testing by a third method. The main advantage of the QIAstat-Dx system compared to other syndromic testing systems, including the ePlex RPP assay, is the ability to generate cycle threshold (CT) values, which could help with the interpretation of results. Taking the data together, this study showed good performance of the QIAstat-Dx RP assay in comparison to the ePlex RPP assay for the detection of respiratory pathogens. The QIAstat-Dx RP assay offers a new, rapid, and accurate sample-to-answer multiplex panel for the detection of the most common viral and bacterial respiratory pathogens and therefore has the potential to direct appropriate therapy and infection control precautions.Publisher PDFPeer reviewe
    corecore