9 research outputs found

    Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA

    Get PDF
    TATA-binding protein (TBP) is central to the regulation of eukaryotic transcription initiation. Recruitment of TBP to target genes can be positively regulated by one of two basal transcription factor complexes: SAGA or TFIID. Negative regulation of TBP promoter association can be performed by Mot1p or the NC2 complex. Recent evidence suggests that Mot1p, NC2 and TBP form a DNA-dependent protein complex. Here, we compare the functions of Mot1p and NC2βduring basal and activated transcription using the anchor-away technique for conditional nuclear depletion. Genome-wide expression analysis indicates that both proteins regulate a highly similar set of genes. Upregulated genes were enriched for SAGA occupancy, while downregulated genes preferred TFIID binding. Mot1p and NC2β depletion during heat shock resulted in failure to downregulate gene expression after initial activation, which was accompanied by increased TBP and RNA pol II promoter occupancies. Depletion of Mot1p or NC2β displayed preferential synthetic lethality with the TBP-interaction module of SAGA. Our results support the model that Mot1p and NC2β directly cooperate in vivo to regulate TBP function, and that they are involved in maintaining basal expression levels as well as in resetting gene expression after induction by stress

    Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium

    No full text
    BACKGROUND & AIMS: The contribution of genetic factors to the pathogenesis of inflammatory bowel disease (IBD) has been established by twin, targeted-sequencing, and genome-wide association studies. These studies identified many risk loci, and research is underway to identify causal variants. These studies have focused mainly on protein-coding genes. We investigated other functional elements in the human genome, such as regulatory regions. METHODS: Using acetylated histone 3 lysine 27 chromatin immunoprecipitation and sequencing, we identified tens of thousands of potential regulatory regions that are active in intestinal epithelium (primary intestinal crypts and cultured organoids) isolated from resected material and from biopsies collected during ileo-colonoscopies and immune cells (monocytes, macrophages, CD34(+), CD4(+), and CD8(+)). We correlated these regions with susceptibility loci for IBD. RESULTS: We have generated acetylated histone 3 lysine 27 profiles from primary intestinal epithelium and cultured organoids, which we have made publically available. We found that 45 of 163 single nucleotide polymorphisms (SNPs) associated with IBD overlap specifically with active regulatory elements. In addition, by taking strong linkage disequilibrium into account, another 47 IBD-associated SNPs colocalized with active regulatory elements through other SNPs in their vicinity. Altogether, 92 of 163 IBD-associated SNPs correlated with distinct active regulatory elements-a frequency 2.5- to 3.5-fold greater than that expected from random sampling. The variations in these SNPs often create or disrupt known binding motifs; they might affect the binding of transcriptional regulators to alter expression of regulated genes. CONCLUSIONS: In addition to variants in protein coding genes, variants in noncoding DNA regulatory regions that are active in intestinal epithelium and immune cells are potentially involved in the pathogenesis of IBD

    Chromatin Conformation Links Distal Target Genes to CKD Loci

    No full text
    Genome-wide association studies (GWASs) have identified many genetic risk factors for CKD. However, linking common variants to genes that are causal for CKD etiology remains challenging. By adapting self-transcribing active regulatory region sequencing, we evaluated the effect of genetic variation on DNA regulatory elements (DREs). Variants in linkage with the CKD-associated single-nucleotide polymorphism rs11959928 were shown to affect DRE function, illustrating that genes regulated by DREs colocalizing with CKD-associated variation can be dysregulated and therefore, considered as CKD candidate genes. To identify target genes of these DREs, we used circular chromosome conformation capture (4C) sequencing on glomerular endothelial cells and renal tubular epithelial cells. Our 4C analyses revealed interactions of CKD-associated susceptibility regions with the transcriptional start sites of 304 target genes. Overlap with multiple databases confirmed that many of these target genes are involved in kidney homeostasis. Expression quantitative trait loci analysis revealed that mRNA levels of many target genes are genotype dependent. Pathway analyses showed that target genes were enriched in processes crucial for renal function, identifying dysregulated geranylgeranyl diphosphate biosynthesis as a potential disease mechanism. Overall, our data annotated multiple genes to previously reported CKD-associated single-nucleotide polymorphisms and provided evidence for interaction between these loci and target genes. This pipeline provides a novel technique for hypothesis generation and complements classic GWAS interpretation. Future studies are required to specify the implications of our dataset and further reveal the complex roles that common variants have in complex diseases, such as CKD

    Additional Candidate Genes for Human Atherosclerotic Disease Identified Through Annotation Based on Chromatin Organization

    No full text
    Background - As genome-wide association efforts, such as CARDIoGRAM and METASTROKE, are ongoing to reveal susceptibility loci for their underlying disease - atherosclerotic disease - identification of candidate genes explaining the associations of these loci has proven the main challenge. Many disease susceptibility loci colocalize with DNA regulatory elements, which influence gene expression through chromatin interactions. Therefore, the target genes of these regulatory elements can be considered candidate genes. Applying these biological principles, we used an alternative approach to annotate susceptibility loci and identify candidate genes for human atherosclerotic disease based on circular chromosome conformation capture followed by sequencing. Methods and Results - In human monocytes and coronary endothelial cells, we generated 63 chromatin interaction data sets for 37 active DNA regulatory elements that colocalize with known susceptibility loci for coronary artery disease (CARDIoGRAMplusC4D) and large artery stroke (METASTROKE). By circular chromosome conformation capture followed by sequencing, we identified a physical 3-dimensional interaction with 326 candidate genes expressed in at least 1 of these cell types, of which 294 have not been reported before. We highlight 16 genes based on expression quantitative trait loci. Conclusions - Our findings provide additional candidate-gene annotation for 37 disease susceptibility loci for human atherosclerotic disease that are of potential interest to better understand the complex pathophysiology of cardiovascular diseases

    Merriment, not wrath and fury

    No full text
    Background - As genome-wide association efforts, such as CARDIoGRAM and METASTROKE, are ongoing to reveal susceptibility loci for their underlying disease - atherosclerotic disease - identification of candidate genes explaining the associations of these loci has proven the main challenge. Many disease susceptibility loci colocalize with DNA regulatory elements, which influence gene expression through chromatin interactions. Therefore, the target genes of these regulatory elements can be considered candidate genes. Applying these biological principles, we used an alternative approach to annotate susceptibility loci and identify candidate genes for human atherosclerotic disease based on circular chromosome conformation capture followed by sequencing. Methods and Results - In human monocytes and coronary endothelial cells, we generated 63 chromatin interaction data sets for 37 active DNA regulatory elements that colocalize with known susceptibility loci for coronary artery disease (CARDIoGRAMplusC4D) and large artery stroke (METASTROKE). By circular chromosome conformation capture followed by sequencing, we identified a physical 3-dimensional interaction with 326 candidate genes expressed in at least 1 of these cell types, of which 294 have not been reported before. We highlight 16 genes based on expression quantitative trait loci. Conclusions - Our findings provide additional candidate-gene annotation for 37 disease susceptibility loci for human atherosclerotic disease that are of potential interest to better understand the complex pathophysiology of cardiovascular diseases

    De novo variants in genes regulating stress granule assembly associate with neurodevelopmental disorders

    No full text
    Stress granules (SGs) are cytoplasmic assemblies in response to a variety of stressors. We report a new neurodevelopmental disorder (NDD) with common features of language problems, intellectual disability, and behavioral issues caused by de novo likely gene-disruptive variants in UBAP2L, which encodes an essential regulator of SG assembly. Ubap2l haploinsufficiency in mouse led to social and cognitive impairments accompanied by disrupted neurogenesis and reduced SG formation during early brain development. On the basis of data from 40,853 individuals with NDDs, we report a nominally significant excess of de novo variants within 29 genes that are not implicated in NDDs, including 3 essential genes (G3BP1, G3BP2, and UBAP2L) in the core SG interaction network. We validated that NDD-related de novo variants in newly implicated and known NDD genes, such as CAPRIN1, disrupt the interaction of the core SG network and interfere with SG formation. Together, our findings suggest the common SG pathology in NDDs
    corecore