9 research outputs found

    Dominance Between Plasmids Determines the Extent of Biofilm Formation

    Get PDF
    Bacterial biofilms have an impact in medical and industrial environments because they often confer protection to bacteria against harmful agents, and constitute a source from which microorganisms can disperse. Conjugative plasmids can enhance bacterial ability to form biofilms because conjugative pili act as adhesion factors. However, plasmids may interact with each other, either facilitating or inhibiting plasmid transfer. Accordingly, we asked whether effects on plasmid transfer also impacts biofilm formation. We measured biofilm formation of Escherichia coli cells harboring two plasmid types, or when the two plasmids were present in the same population but carried in different cells. Using eleven natural isolated conjugative plasmids, we confirmed that some indeed promote biofilm formation and, importantly, that this ability is correlated with conjugative efficiency. Further we studied the effect of plasmid pairs on biofilm formation. We observed increased biofilm formation in approximately half of the combinations when both plasmids inhabited the same cell or when the plasmids were carried in different cells. Moreover, in approximately half of the combinations, independent of the co-inhabitation conditions, one of the plasmids alone determined the extent of biofilm formation - thus having a dominant effect over the other plasmid. The molecular mechanisms responsible for these interactions were not evaluated here and future research is required to elucidate them.info:eu-repo/semantics/publishedVersio

    The TatC component of the twin-arginine protein translocase functions as an obligate oligomer

    Get PDF
    The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in Escherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate-bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild-type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue-native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild-type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate-induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.</p

    Modulation of multidrug-resistant clone success in <i>Escherichia coli</i> populations:a longitudinal, multi-country, genomic and antibiotic usage cohort study

    Get PDF
    BACKGROUND: The effect of antibiotic usage on the success of multidrug-resistant (MDR) clones in a population remains unclear. With this genomics-based molecular epidemiology study, we aimed to investigate the contribution of antibiotic use to Escherichia coli clone success, relative to intra-strain competition for colonisation and infection.METHODS: We sequenced all the available E coli bloodstream infection isolates provided by the British Society for Antimicrobial Chemotherapy (BSAC) from 2012 to 2017 (n=718) and combined these with published data from the UK (2001-11; n=1090) and Norway (2002-17; n=3254). Defined daily dose (DDD) data from the European Centre for Disease Prevention and Control (retrieved on Sept 21, 2021) for major antibiotic classes (β-lactam, tetracycline, macrolide, sulfonamide, quinolone, and non-penicillin β-lactam) were used together with sequence typing, resistance profiling, regression analysis, and non-neutral Wright-Fisher simulation-based modelling to enable systematic comparison of resistance levels, clone success, and antibiotic usage between the UK and Norway.FINDINGS: Sequence type (ST)73, ST131, ST95, and ST69 accounted for 892 (49·3%) of 1808 isolates in the BSAC collection. In the UK, the proportion of ST69 increased between 2001-10 and 2011-17 (p=0·0004), whereas the proportions of ST73 and ST95 did not vary between periods. ST131 expanded quickly after its emergence in 2003 and its prevalence remained consistent throughout the study period (apart from a brief decrease in 2009-10). The extended-spectrum β-lactamase (ESBL)-carrying, globally disseminated MDR clone ST131-C2 showed overall greater success in the UK (154 [56·8%] of 271 isolates in 2003-17) compared with Norway (51 [18·3%] of 278 isolates in 2002-17; p&lt;0·0001). DDD data indicated higher total use of antimicrobials in the UK, driven mainly by the class of non-penicillin β-lactams, which were used between 2·7-times and 5·1-times more in the UK per annum (ratio mean 3·7 [SD 0·8]). This difference was associated with the higher success of the MDR clone ST131-C2 (pseudo-R2 69·1%). A non-neutral Wright-Fisher model replicated the observed expansion of non-MDR and MDR sequence types under higher DDD regimes. INTERPRETATION: Our study indicates that resistance profiles of contemporaneously successful clones can vary substantially, warranting caution in the interpretation of correlations between aggregate measures of resistance and antibiotic usage. Our study further suggests that in countries with low-to-moderate use of antibiotics, such as the UK and Norway, the extent of non-penicillin β-lactam use modulates rather than determines the success of widely disseminated MDR ESBL-carrying E coli clones. Detailed understanding of underlying causal drivers of success is important for improved control of resistant pathogens.FUNDING: Trond Mohn Foundation, Marie Skłodowska-Curie Actions, European Research Council, Royal Society, and Wellcome Trust.</p

    Evolutionary and functional history of the Escherichia coli K1 capsule

    Get PDF
    Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage

    Emergence and dissemination of antimicrobial resistance in Escherichia coli causing bloodstream infections in Norway in 2002-17: a nationwide, longitudinal, microbial population genomic study.

    Get PDF
    BACKGROUND: The clonal diversity underpinning trends in multidrug resistant Escherichia coli causing bloodstream infections remains uncertain. We aimed to determine the contribution of individual clones to resistance over time, using large-scale genomics-based molecular epidemiology. METHODS: This was a longitudinal, E coli population, genomic, cohort study that sampled isolates from 22 512 E coli bloodstream infections included in the Norwegian surveillance programme on resistant microbes (NORM) from 2002 to 2017. 15 of 22 laboratories were able to share their isolates, and the first 22·5% of isolates from each year were requested. We used whole genome sequencing to infer the population structure (PopPUNK), and we investigated the clade composition of the dominant multidrug resistant clonal complex (CC)131 using genetic markers previously reported for sequence type (ST)131, effective population size (BEAST), and presence of determinants of antimicrobial resistance (ARIBA, PointFinder, and ResFinder databases) over time. We compared these features between the 2002-10 and 2011-17 time periods. We also compared our results with those of a longitudinal study from the UK done between 2001 and 2011. FINDINGS: Of the 3500 isolates requested from the participating laboratories, 3397 (97·1%) were received, of which 3254 (95·8%) were successfully sequenced and included in the analysis. A significant increase in the number of multidrug resistant CC131 isolates from 71 (5·6%) of 1277 in 2002-10 to 207 (10·5%) of 1977 in 2011-17 (p<0·0001), was the largest clonal expansion. CC131 was the most common clone in extended-spectrum β-lactamase (ESBL)-positive isolates (75 [58·6%] of 128) and fluoroquinolone non-susceptible isolates (148 [39·2%] of 378). Within CC131, clade A increased in prevalence from 2002, whereas the global multidrug resistant clade C2 was not observed until 2007. Multiple de-novo acquisitions of both blaCTX-M ESBL-encoding genes in clades A and C1 and gain of phenotypic fluoroquinolone non-susceptibility across the clade A phylogeny were observed. We estimated that exponential increases in the effective population sizes of clades A, C1, and C2 occurred in the mid-2000s, and in clade B a decade earlier. The rate of increase in the estimated effective population size of clade A (Ne=3147) was nearly ten-times that of C2 (Ne=345), with clade A over-represented in Norwegian CC131 isolates (75 [27·0%] of 278) compared with the UK study (8 [5·4%] of 147 isolates). INTERPRETATION: The early and sustained establishment of predominantly antimicrobial susceptible CC131 clade A isolates, relative to multidrug resistant clade C2 isolates, suggests that resistance is not necessary for clonal success. However, even in the low antibiotic use setting of Norway, resistance to important antimicrobial classes has rapidly been selected for in CC131 clade A isolates. This study shows the importance of genomic surveillance in uncovering the complex ecology underlying multidrug resistance dissemination and competition, which have implications for the design of strategies and interventions to control the spread of high-risk multidrug resistant clones. FUNDING: Trond Mohn Foundation, European Research Council, Marie Skłodowska-Curie Actions, and the Wellcome Trust

    Evolutionary and functional history of the escherichia coli K1 capsule

    Get PDF
    Escherichia coli is a leading cause of invasive bacterial infections in humans. Capsule polysaccharide has an important role in bacterial pathogenesis, and the K1 capsule has been firmly established as one of the most potent capsule types in E. coli through its association with severe infections. However, little is known about its distribution, evolution and functions across the E. coli phylogeny, which is fundamental to elucidating its role in the expansion of successful lineages. Using systematic surveys of invasive E. coli isolates, we show that the K1-cps locus is present in a quarter of bloodstream infection isolates and has emerged in at least four different extraintestinal pathogenic E. coli (ExPEC) phylogroups independently in the last 500 years. Phenotypic assessment demonstrates that K1 capsule synthesis enhances E. coli survival in human serum independent of genetic background, and that therapeutic targeting of the K1 capsule re-sensitizes E. coli from distinct genetic backgrounds to human serum. Our study highlights that assessing the evolutionary and functional properties of bacterial virulence factors at population levels is important to better monitor and predict the emergence of virulent clones, and to also inform therapies and preventive medicine to effectively control bacterial infections whilst significantly lowering antibiotic usage
    corecore