29 research outputs found

    Self-similar vortex-induced vibrations of a hanging string

    No full text
    International audienceAn experimental analysis of the vortex-induced vibrations of a hanging string with variable tension along its length is presented in this paper. It is shown that standing waves develop along the hanging string. First, the evolution of the Strouhal number S t with the Reynolds number R e follows a trend similar to what is observed for a circular cylinder in a flow for relatively low Reynolds numbers (32 < Re < 700). Second, the extracted mode shapes are self-similar: a rescaling of the spanwise coordinate by a self-similarity coefficient allows all of them to collapse onto a unique function. The self-similar behaviour of the spatial distribution of the vibrations along the hanging string is then explained theoretically by performing a linear stability analysis of an adapted wake-oscillator model. This linear stability analysis finally provides an accurate description of the mode shapes and of the evolution of the self-similarity coefficient with the flow speed

    On the efficiency of energy harvesting using vortex-induced vibrations of cables

    Get PDF
    Many technologies based on fluid–structure interaction mechanisms are being developed to harvest energy from geophysical flows. The velocity of such flows is low, and so is their energy density. Large systems are therefore required to extract a significant amount of energy. The question of the efficiency of energy harvesting using vortex-induced vibrations (VIV) of cables is addressed in this paper, through two reference configurations: (i) a long tensioned cable with periodically-distributed harvesters and (ii) a hanging cable with a single harvester at its upper extremity. After validation against either direct numerical simulations or experiments, an appropriate reduced-order wake-oscillator model is used to perform parametric studies of the impact of the harvesting parameters on the efficiency. For both configurations, an optimal set of parameters is identified and it is shown that the maximum efficiency is close to the value reached with an elastically mounted rigid cylinder. The variability of the efficiency is studied in light of the fundamental properties of each configuration, i.e. body flexibility and gravity-induced spatial variation of the tension. In the periodically-distributed harvester configuration, it is found that the standing-wave nature of the vibration and structural mode selection plays a central role in energy extraction. In contrast, the efficiency of the hanging cable is essentially driven by the occurrence of traveling wave vibrations

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Les reactions photochimiques à l’échelle industrielle

    No full text
    International audienc

    Récupération d'énergie et vibrations induites par vortex de structures flexibles

    No full text
    Les vibrations induites par vortex (VIV) d'un solide immergé interagissant fortement avec son sillage sont des oscillations auto-entretenues. Les VIV peuvent atteindre des amplitudes significatives lorsque la fréquence du détachement tourbillonnaire est proche d'une des fréquences propres de la dynamique du solide, et constituent donc un mécanisme d'interactions fluide/structure intéressant pour extraire de l'énergie d'un écoulement. Les VIV de structures flexibles sont par conséquent analysées dans cette thèse à la fois numériquement, grâce au concept d'oscillateur de sillage, et expérimentalement. Nous démontrons ainsi qu'il est possible d'extraire efficacement de l'énergie d'un écoulement grâce aux VIV d'un câble. Nous prouvons également que la flexibilité de la structure lui permet d'adapter sa dynamique aux sollicitations fluctuantes du sillage pour extraire efficacement de l'énergie de l'écoulement, grâce à (i) l'excitation de ses différents modes de vibrations, dans le cas d'un câble tendu équipé de récupérateurs d'énergie périodiquement distribués, chapitre 2, ou (ii) l'apparition d'ondes progressives de VIV transportant l'énergie lorsque l'on considère un câble suspendu par un unique récupérateur d'énergie, chapitre 3.Vortex-induced vibrations (VIV) are self-sustained oscillations of an immersed body strongly interacting with its fluctuating wake. These oscillations may reach significant amplitudes when the vortex shedding frequency is close to one of the solid's natural frequencies. VIV consequently appear as an interesting fluid/structure interaction mechanism for energy harvesting. They are here studied both numerically, using a wake-oscillator model, and experimentally. We first prove that it is actually possible to effectively extract energy out of a flow thanks to the VIV of flexible structures, such as cables. We also prove that the structure's flexibility allows it to adapt its dynamics to the fluctuating forcing of the wake, leading to efficient energy harvesting, thanks to (i) the successive excitations of its different vibrations modes, in the case of a tensioned cable with periodically-distributed energy harvesters, chapter 2, or (ii) the development of traveling vortex-induced waves that can transport energy when a hanging cable with a top harvester is considered, chapter 3.PALAISEAU-Polytechnique (914772301) / SudocSudocFranceF

    Optimal energy harvesting by Vortex-Induced Vibrations in Cables.

    No full text
    International audienc

    Quality evaluation of 3D city building Models with automatic error diagnosis

    No full text
    International audienc
    corecore