199 research outputs found
Spectroscopy of Po
Prompt, in-beam rays following the reaction Yb + 142 MeV
Si were measured at the ATLAS facility using 10 Compton-suppressed Ge
detectors and the Fragment Mass Analyzer. Transitions in Po were
identified and placed using -ray singles and coincidence data gated on
the mass of the evaporation residues. A level spectrum up to
J10 was established. The structure of Po is more
collective than that observed in the heavier polonium isotopes and indicates
that the structure has started to evolve towards the more collective nature
expected for deformed nuclei.Comment: 8 pages, revtex 3.0, 4 figs. available upon reques
Spin-rotor Interpretation of Identical Bands and Quantized Alignment in Superdeformed A 190 Nuclei
The ``identical'' bands in superdeformed mercury, thallium, and lead nuclei
are interpreted as examples of orbital angular momentum rotors with the weak
spin-orbit coupling of pseudo- symmetries and supersymmetries.Comment: 15 pages, revtex 3.0, 7 figures available upon request from
[email protected]
An Introduction to Nuclear Supersymmetry: a Unification Scheme for Nuclei
The main ideas behind nuclear supersymmetry are presented, starting from the
basic concepts of symmetry and the methods of group theory in physics. We
propose new, more stringent experimental tests that probe the supersymmetry
classification in nuclei and point out that specific correlations should exist
for particle transfer intensities among supersymmetric partners. We also
discuss possible ways to generalize these ideas to cases where no dynamical
symmetries are present. The combination of these theoretical and experimental
studies may play a unifying role in nuclear phenomena.Comment: 40 pages, 11 figures, lecture notes `VIII Hispalensis International
Summer School: Exotic Nuclear Physics', Oromana, Sevilla, Spain, June 9-21,
200
Formal comparison of SUSY in the nuclear U(6/2) model and in quantum field theory
A nuclear physics example of the U(6/2) supersymmetry group is considered. It
is shown that this group contains a supersymmetric subgroup with a structure
similar to the SUSY model of the quantum field theory (QFT). A comparison of
two models help to clarify the relation between the supersymmetry schemes of
QFT and of nuclear physics. Using this similarity a relation between the
numbers of the bosonic and fermionic states similar to the fundamental relation
in QFT is obtained. For those supermultiplets with at least two fermions the
number of the bosonic and fermionic states are equal as in QFT.Comment: 11 pages and one eps-figure. Phys.Rev.C (1999) in pres
The Single-Particle Structure of Neutron-Rich Nuclei of Astrophysical Interest at the Ornl Hribf
The rapid nuetron-capture process (r process) produces roughly half of the
elements heavier than iron. The path and abundances produced are uncertain,
however, because of the lack of nuclear strucure information on important
neutron-rich nuclei. We are studying nuclei on or near the r-process path via
single-nucleon transfer reactions on neutron-rich radioactive beams at ORNL's
Holifield Radioactive Ion Beam Facility (HRIBF). Owing to the difficulties in
studying these reactions in inverse kinematics, a variety of experimental
approaches are being developed. We present the experimental methods and initial
results.Comment: Proceedings of the Third International Conference on Fission and
Properties of Neutron-Rich Nucle
Superdeformation in Po
The Yb(Si,5n) reaction at 148 MeV with thin targets was used
to populate high-angular momentum states in Po. Resulting rays
were observed with Gammasphere. A weakly-populated superdeformed band of 10
-ray transitions was found and has been assigned to Po. This is
the first observation of a SD band in the region in a nucleus
with . The of the new band is very similar to those of
the yrast SD bands in Hg and Pb. The intensity profile suggests
that this band is populated through states close to where the SD band crosses
the yrast line and the angular momentum at which the fission process dominates.Comment: 10 pages, revtex, 2 figs. available on request, submitted to Phys.
Rev. C. (Rapid Communications
Mg(, )Na reaction study for spectroscopy of Na
The Mg(, )Na reaction was measured at the Holifield
Radioactive Ion Beam Facility at Oak Ridge National Laboratory in order to
better constrain spins and parities of energy levels in Na for the
astrophysically important F()Ne reaction rate
calculation. 31 MeV proton beams from the 25-MV tandem accelerator and enriched
Mg solid targets were used. Recoiling He particles from the
Mg(, )Na reaction were detected by a highly segmented
silicon detector array which measured the yields of He particles over a
range of angles simultaneously. A new level at 6661 5 keV was observed in
the present work. The extracted angular distributions for the first four levels
of Na and Distorted Wave Born Approximation (DWBA) calculations were
compared to verify and extract angular momentum transfer.Comment: 11 pages, 6 figures, proceedings of the 18th International Conference
on Accelerators and Beam Utilization (ICABU2014
Direct reaction measurements with a 132Sn radioactive ion beam
The (d,p) neutron transfer and (d,d) elastic scattering reactions were
measured in inverse kinematics using a radioactive ion beam of 132Sn at 630
MeV. The elastic scattering data were taken in a region where Rutherford
scattering dominated the reaction, and nuclear effects account for less than 8%
of the cross section. The magnitude of the nuclear effects was found to be
independent of the optical potential used, allowing the transfer data to be
normalized in a reliable manner. The neutron-transfer reaction populated a
previously unmeasured state at 1363 keV, which is most likely the
single-particle 3p1/2 state expected above the N=82 shell closure. The data
were analyzed using finite range adiabatic wave calculations and the results
compared with the previous analysis using the distorted wave Born
approximation. Angular distributions for the ground and first excited states
are consistent with the previous tentative spin and parity assignments.
Spectroscopic factors extracted from the differential cross sections are
similar to those found for the one neutron states beyond the benchmark
doubly-magic nucleus 208Pb.Comment: 22 pages, 7 figure
New -ray Transitions Observed in Ne with Implications for the O(,)Ne Reaction Rate
The O(,)Ne reaction is responsible for breakout
from the hot CNO cycle in Type I x-ray bursts. Understanding the properties of
resonances between and 5 MeV in Ne is crucial in the
calculation of this reaction rate. The spins and parities of these states are
well known, with the exception of the 4.14- and 4.20-MeV states, which have
adopted spin-parities of 9/2 and 7/2, respectively. Gamma-ray
transitions from these states were studied using triton--
coincidences from the F(He,)Ne reaction measured
with GODDESS (Gammasphere ORRUBA Dual Detectors for Experimental Structure
Studies) at Argonne National Laboratory. The observed transitions from the
4.14- and 4.20-MeV states provide strong evidence that the values are
actually 7/2 and 9/2, respectively. These assignments are consistent
with the values in the F mirror nucleus and in contrast to previously
accepted assignments
- …