267 research outputs found

    Pseudomonas aeruginosa Adaptation to Lungs of Cystic Fibrosis Patients Leads to Lowered Resistance to Phage and Protist Enemies

    Get PDF
    Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations

    Non-Opsonic Phagocytosis of Legionella pneumophila by Macrophages Is Mediated by Phosphatidylinositol 3-Kinase

    Get PDF
    Background: Legionella pneumophila, is an intracellular pathogen that causes Legionnaires ’ disease in humans, a potentially lethal pneumonia. L. pneumophila has the ability to enter and replicate in the host and is essential for pathogenesis. Methodology/Principal Findings: Phagocytosis was measured by cell invasion assays. Construction of PI3K mutant by PCR cloning and expression of dominant negative mutant was detected by Western blot. PI3K activity was measured by 32 P labeling and detection of phospholipids products by thin layer chromatography. Infection of macrophages with virulent L. pneumophila stimulated the formation of phosphatidylinositol 3-phosphate (PIP3), a phosphorylated lipid product of PI3K whereas two structurally distinct phosphatidylinositol 3 kinase (PI3K) inhibitors, wortmannin and LY294002, reduced L. pneumophila entry into macrophages in a dose-dependent fashion. Furthermore, PI3K activation led to Akt stimulation, a serine/threonine kinase, which was also inhibited by wortmannin and LY294002. In contrast, PI3K and protein kinase B (PKB/Akt) activities were lower in macrophages infected with an avirulent bacterial strain. Only virulent L. pneumophila increased lipid kinase activity present in immunoprecipitates of the p85a subunit of class I PI3K and tyrosine phosphorylated proteins. In addition, macrophages expressing a specific dominant negative mutant of PI3K reduced L. pneumophila entry into these cells. Conclusion/Significance: Entry of L. pneumophila is mediated by PI3K/Akt signaling pathway. These results suggest an important role for PI3K and Akt in the L. pneumophila infection process. They point to possible novel strategies fo

    Clinical correlates of renal dysfunction in hypertensive patients without cardiovascular complications: the REDHY study

    Get PDF
    Our study was aimed to assess the clinical correlates of different degrees of renal dysfunction in a wide group of non-diabetic hypertensive patients, free from cardiovascular (CV) complications and known renal diseases, participating to the REDHY (REnal Dysfunction in HYpertension) study. A total of 1856 hypertensive subjects (mean age: 47±14 years), attending our hypertension centre, were evaluated. The glomerular filtration rate (GFR) was estimated by the simplified Modification of Diet in Renal Disease Study prediction equation. A 24-h urine sample was collected to determine albumin excretion rate (AER). Albuminuria was defined as an AER greater than 20 μg min−1. We used the classification proposed by the US National Kidney Foundation's guidelines for chronic kidney disease (CKD) to define the stages of renal function impairment. In multiple logistic regression analysis, the probability of having stage 1 and stage 2 CKD was significantly higher in subjects with greater values of systolic blood pressure (SBP) and with larger waist circumference. SBP was also positively related to stage 3 CKD. Stage 3 and stages 4–5 CKD were inversely associated with waist circumference and directly associated with serum uric acid. Age was inversely related to stage 1 CKD and directly related to stage 3 CKD. The factors associated with milder forms of kidney dysfunction are, in part, different from those associated with more advanced stages of renal function impairment

    Detection of Vibrio cholerae and Acanthamoeba species from same natural water samples collected from different cholera endemic areas in Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Vibrio cholerae </it>O1 and <it>V. cholerae </it>O139 infect humans, causing the diarrheal and waterborne disease cholera, which is a worldwide health problem. <it>V. cholerae </it>and the free-living amoebae <it>Acanthamoeba </it>species are present in aquatic environments, including drinking water and it has shown that <it>Acanthamoebae </it>support bacterial growth and survival. Recently it has shown that <it>Acanthamoeba </it>species enhanced growth and survival of <it>V. cholerae </it>O1 and O139. Water samples from different cholera endemic areas in Sudan were collected with the aim to detect both <it>V. cholerae </it>and <it>Acanthamoeba </it>species from same natural water samples by polymerase chain reaction (PCR).</p> <p>Findings</p> <p>For the first time both <it>V. cholerae </it>and <it>Acanthamoeba </it>species were detected in same natural water samples collected from different cholera endemic areas in Sudan. 89% of detected <it>V. cholerae </it>was found with <it>Acanthamoeba </it>in same water samples.</p> <p>Conclusions</p> <p>The current findings disclose <it>Acanthamoedae </it>as a biological factor enhancing survival of <it>V. cholerae </it>in nature.</p

    Metabolic Engineering of Cofactor F420 Production in Mycobacterium smegmatis

    Get PDF
    Cofactor F420 is a unique electron carrier in a number of microorganisms including Archaea and Mycobacteria. It has been shown that F420 has a direct and important role in archaeal energy metabolism whereas the role of F420 in mycobacterial metabolism has only begun to be uncovered in the last few years. It has been suggested that cofactor F420 has a role in the pathogenesis of M. tuberculosis, the causative agent of tuberculosis. In the absence of a commercial source for F420, M. smegmatis has previously been used to provide this cofactor for studies of the F420-dependent proteins from mycobacterial species. Three proteins have been shown to be involved in the F420 biosynthesis in Mycobacteria and three other proteins have been demonstrated to be involved in F420 metabolism. Here we report the over-expression of all of these proteins in M. smegmatis and testing of their importance for F420 production. The results indicate that co–expression of the F420 biosynthetic proteins can give rise to a much higher F420 production level. This was achieved by designing and preparing a new T7 promoter–based co-expression shuttle vector. A combination of co–expression of the F420 biosynthetic proteins and fine-tuning of the culture media has enabled us to achieve F420 production levels of up to 10 times higher compared with the wild type M. smegmatis strain. The high levels of the F420 produced in this study provide a suitable source of this cofactor for studies of F420-dependent proteins from other microorganisms and for possible biotechnological applications

    The Association of PNPLA3 Variants with Liver Enzymes in Childhood Obesity Is Driven by the Interaction with Abdominal Fat

    Get PDF
    BACKGROUND AND AIMS: A polymorphism in adiponutrin/patatin-like phospholipase-3 gene (PNPLA3), rs738409 C->G, encoding for the I148M variant, is the strongest genetic determinant of liver fat and ALT levels in adulthood and childhood obesity. Aims of this study were i) to analyse in a large group of obese children the role of the interaction of not-genetic factors such as BMI, waist circumference (W/Hr) and insulin resistance (HOMA-IR) in exposing the association between the I148M polymorphism and ALT levels and ii) to stratify the individual risk of these children to have liver injury on the basis of this gene-environment interaction. METHODS: 1048 Italian obese children were investigated. Anthropometric, clinical and metabolic data were collected and the PNPLA3 I148M variant genotyped. RESULTS: Children carrying the 148M allele showed higher ALT and AST levels (p = 0.000006 and p = 0.0002, respectively). Relationships between BMI-SDS, HOMA-IR and W/Hr with ALT were analysed in function of the different PNPLA3 genotypes. Children 148M homozygous showed a stronger correlation between ALT and W/Hr than those carrying the other genotypes (p: 0.0045) and, therefore, 148M homozygotes with high extent of abdominal fat (W/Hr above 0.62) had the highest OR (4.9, 95% C. I. 3.2-7.8, p = 0.00001) to develop pathologic ALT. CONCLUSIONS: We have i) showed for the first time that the magnitude of the association of PNPLA3 with liver enzymes is driven by the size of abdominal fat and ii) stratified the individual risk to develop liver damage on the basis of the interaction between the PNPLA3 genotype and abdominal fat

    Leptin and Adiponectin: new players in the field of tumor cell and leukocyte migration

    Get PDF
    Adipose tissue is no longer considered to be solely an energy storage, but exerts important endocrine functions, which are primarily mediated by a network of various soluble factors derived from fat cells, called adipocytokines. In addition to their responsibility to influence energy homeostasis, new studies have identified important pathways linking metabolism with the immune system, and demonstrating a modulatory role of adipocytokines in immune function. Additionally, epidemiological studies underline that obesity represents a significant risk factor for the development of cancer, although the exact mechanism of this relationship remains to be determined. Whereas a possible influence of adipocytokines on the proliferation of tumor cells is already known, new evidence has come to light elucidating a modulatory role of this signaling substances in the regulation of migration of leukocytes and tumor cells. The migration of leukocytes is a key feature to fight cancer cells, whereas the locomotion of tumor cells is a prerequisite for tumor formation and metastasis. We herein review the latest tumor biological findings on the role of the most prominent adipocytokines leptin and adiponectin, which are secreted by fat cells, and which are involved in leukocyte migration, tumor growth, invasion and metastasis. This review thus accentuates the complex, interactive involvement of adipocytokines in the regulation of migration of both leukocytes and tumor cells, and gives an insight in the underlying molecular mechanisms

    Reorganizing the Intrinsic Functional Architecture of the Human Primary Motor Cortex during Rest with Non-Invasive Cortical Stimulation

    Get PDF
    The primary motor cortex (M1) is the main effector structure implicated in the generation of voluntary movements and is directly involved in motor learning. The intrinsic horizontal neuronal connections of M1 exhibit short-term and long-term plasticity, which is a strong substrate for learning-related map reorganization. Transcranial direct current stimulation (tDCS) applied for few minutes over M1 has been shown to induce relatively long-lasting plastic alterations and to modulate motor performance. Here we test the hypothesis that the relatively long-lasting synaptic modification induced by tDCS over M1 results in the alteration of associations among populations of M1 neurons which may be reflected in changes of its functional architecture. fMRI resting-state datasets were acquired immediately before and after 10 minutes of tDCS during rest, with the anode/cathode placed over the left M1. For each functional dataset, grey-matter voxels belonging to Brodmann area 4 (BA4) were labelled and afterwards BA4 voxel-based synchronization matrices were calculated and thresholded to construct undirected graphs. Nodal network parameters which characterize the architecture of functional networks (connectivity degree, clustering coefficient and characteristic path-length) were computed, transformed to volume maps and compared before and after stimulation. At the dorsolateral-BA4 region cathodal tDCS boosted local connectedness, while anodal-tDCS enhanced long distance functional communication within M1. Additionally, the more efficient the functional architecture of M1 was at baseline, the more efficient the tDCS-induced functional modulations were. In summary, we show here that it is possible to non-invasively reorganize the intrinsic functional architecture of M1, and to image such alterations

    Towards a Synthetic Chloroplast

    Get PDF
    The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices

    Increased Intestinal Permeability Correlates with Sigmoid Mucosa alpha-Synuclein Staining and Endotoxin Exposure Markers in Early Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) is the second most common neurodegenerative disorder of aging. The pathological hallmark of PD is neuronal inclusions termed Lewy bodies whose main component is alpha-synuclein protein. The finding of these Lewy bodies in the intestinal enteric nerves led to the hypothesis that the intestine might be an early site of PD disease in response to an environmental toxin or pathogen. One potential mechanism for environmental toxin(s) and proinflammatory luminal products to gain access to mucosal neuronal tissue and promote oxidative stress is compromised intestinal barrier integrity. However, the role of intestinal permeability in PD has never been tested. We hypothesized that PD subjects might exhibit increased intestinal permeability to proinflammatory bacterial products in the intestine. To test our hypothesis we evaluated intestinal permeability in subjects newly diagnosed with PD and compared their values to healthy subjects. In addition, we obtained intestinal biopsies from both groups and used immunohistochemistry to assess bacterial translocation, nitrotyrosine (oxidative stress), and alpha-synuclein. We also evaluated serum markers of endotoxin exposure including LPS binding protein (LBP). Our data show that our PD subjects exhibit significantly greater intestinal permeability (gut leakiness) than controls. In addition, this intestinal hyperpermeability significantly correlated with increased intestinal mucosa staining for E. coli bacteria, nitrotyrosine, and alpha-synuclein as well as serum LBP levels in PD subjects. These data represent not only the first demonstration of abnormal intestinal permeability in PD subjects but also the first correlation of increased intestinal permeability in PD with intestinal alpha-synuclein (the hallmark of PD), as well as staining for gram negative bacteria and tissue oxidative stress. Our study may thus shed new light on PD pathogenesis as well as provide a new method for earlier diagnosis of PD and suggests potential therapeutic targets in PD subjects.Clinicaltrials.gov NCT01155492
    corecore