103 research outputs found

    Preliminary results on machine classification of soil associations in Collin County, Texas

    Get PDF
    There are no author-identified significant results in this report

    Determining density of maize canopy. 2: Airborne multispectral scanner data

    Get PDF
    Multispectral scanner data were collected in two flights over a light colored soil background cover plot at an altitude of 305 m. Energy in eleven reflective wavelength band from 0.45 to 2.6 microns was recorded. Four growth stages of maize (Zea mays L.) gave a wide range of canopy densities for each flight date. Leaf area index measurements were taken from the twelve subplots and were used as a measure of canopy density. Ratio techniques were used to relate uncalibrated scanner response to leaf area index. The ratios of scanner data values for the 0.72 to 0.92 micron wavelength band over the 0.61 to 0.70 micron wavelength band were calculated for each plot. The ratios related very well to leaf area index for a given flight date. The results indicated that spectral data from maize canopies could be of value in determining canopy density

    Application of cluster analysis and centroid factor analysis to the numerical taxonomy of some soils of the world

    Get PDF
    Call number: LD2668 .T4 1967 C577Master of Scienc

    Density of states determined from Monte Carlo simulations

    Full text link
    We describe method for calculating the density of states by combining several canonical monte carlo runs. We discuss how critical properties reveal themselves in g(ϵ)g(\epsilon) and demonstrate this by applying the method several different phase transitions. We also demonstrate how this can used to calculate the conformal charge, where the dominating numerical method has traditionally been transfer matrix.Comment: Major revision of paper, several references added throughout. Current version accepted for publication in Phys. Rev.

    Physics of the Riemann Hypothesis

    Full text link
    Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here we choose a particular number theoretical function, the Riemann zeta function and examine its influence in the realm of physics and also how physics may be suggestive for the resolution of one of mathematics' most famous unconfirmed conjectures, the Riemann Hypothesis. Does physics hold an essential key to the solution for this more than hundred-year-old problem? In this work we examine numerous models from different branches of physics, from classical mechanics to statistical physics, where this function plays an integral role. We also see how this function is related to quantum chaos and how its pole-structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations we highlight how physics can perhaps shed light on the Riemann Hypothesis. Naturally, our aim could not be to be comprehensive, rather we focus on the major models and aim to give an informed starting point for the interested Reader.Comment: 27 pages, 9 figure

    Self-similarity of Mean Flow in Pipe Turbulence

    Get PDF
    Based on our previous modified log-wake law in turbulent pipe ‡flows, we invent two compound similarity numbers (Y;U), where Y is a combination of the inner variable y+ and outer variable , and U is the pure exect of the wall. The two similarity numbers can well collapse mean velocity profile data with different moderate and large Reynolds numbers into a single universal profile. We then propose an arctangent law for the buffer layer and a general log law for the outer region in terms of (Y;U). From Milikan’s maximum velocity law and the Princeton superpipe data, we derive the von Kármán constant = 0:43 and the additive constant B=6. Using an asymptotic matching method, we obtain a self-similarity law that describes the mean velocity profile from the wall to axis; and embeds the linear law in the viscous sublayer, the quartic law in the bursting sublayer, the classic log law in the overlap, the sine-square wake law in the wake layer, and the parabolic law near the pipe axis. The proposed arctangent law, the general log law and the self-similarity law have been compared with the high-quality data sets, with diffrent Reynolds numbers, including those from the Princeton superpipe, Loulou et al., Durst et al., Perry et al., and den Toonder and Nieuwstadt. Finally, as an application of the proposed laws, we improve the McKeon et al. method for Pitot probe displacement correction, which can be used to correct the widely used Zagarola and Smits data set

    Quantum Simulation of Spin Models on an Arbitrary Lattice with Trapped Ions

    Full text link
    A collection of trapped atomic ions represents one of the most attractive platforms for the quantum simulation of interacting spin networks and quantum magnetism. Spin-dependent optical dipole forces applied to an ion crystal create long-range effective spin-spin interactions and allow the simulation of spin Hamiltonians that possess nontrivial phases and dynamics. Here we show how appropriate design of laser fields can provide for arbitrary multidimensional spin-spin interaction graphs even for the case of a linear spatial array of ions. This scheme uses currently existing trap technology and is scalable to levels where classical methods of simulation are intractable.Comment: 5 pages, 4 figure

    Validation of Solutions of Construction Problems in Dynamic Geometry Environments

    Full text link
    This paper discusses issues concerning the validation of solutions of construction problems in Dynamic Geometry Environments (DGEs) as compared to classic paper-and-pencil Euclidean geometry settings. We begin by comparing the validation criteria usually associated with solutions of construction problems in the two geometry worlds – the ‘drag test’ in DGEs and the use of only straightedge and compass in classic Euclidean geometry. We then demonstrate that the drag test criterion may permit constructions created using measurement tools to be considered valid; however, these constructions prove inconsistent with classical geometry. This inconsistency raises the question of whether dragging is an adequate test of validity, and the issue of measurement versus straightedge-and-compass. Without claiming that the inconsistency between what counts as valid solution of a construction problem in the two geometry worlds is necessarily problematic, we examine what would constitute the analogue of the straightedge-and-compass criterion in the domain of DGEs. Discovery of this analogue would enrich our understanding of DGEs with a mathematical idea that has been the distinguishing feature of Euclidean geometry since its genesis. To advance our goal, we introduce the compatibility criterion , a new but not necessarily superior criterion to the drag test criterion of validation of solutions of construction problems in DGEs. The discussion of the two criteria anatomizes the complexity characteristic of the relationship between DGEs and the paper-and-pencil Euclidean geometry environment, advances our understanding of the notion of geometrical constructions in DGEs, and raises the issue of validation practice maintaining the pace of ever-changing software.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42932/1/10758_2004_Article_6999.pd
    • …
    corecore