
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Civil Engineering Faculty Publications Civil Engineering 

June 2006 

Self-similarity of Mean Flow in Pipe Turbulence Self-similarity of Mean Flow in Pipe Turbulence 

Junke Guo 
University of Nebraska - Lincoln, jguo2@unl.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/civilengfacpub 

 Part of the Civil Engineering Commons 

Guo, Junke, "Self-similarity of Mean Flow in Pipe Turbulence" (2006). Civil Engineering Faculty 
Publications. 2. 
https://digitalcommons.unl.edu/civilengfacpub/2 

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of 
Nebraska - Lincoln. It has been accepted for inclusion in Civil Engineering Faculty Publications by an authorized 
administrator of DigitalCommons@University of Nebraska - Lincoln. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@University of Nebraska

https://core.ac.uk/display/17228246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/civilengfacpub
https://digitalcommons.unl.edu/civilengineering
https://digitalcommons.unl.edu/civilengfacpub?utm_source=digitalcommons.unl.edu%2Fcivilengfacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.unl.edu%2Fcivilengfacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/civilengfacpub/2?utm_source=digitalcommons.unl.edu%2Fcivilengfacpub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages


Self-Similarity of Mean-Flow in Pipe Turbulence

Junke Guo�

University of Nebraska, Omaha, NE 68182-0178, U.S.

Based on our previous modi�ed log-wake law in turbulent pipe �ows, we invent two
compound similarity numbers (Y;U), where Y is a combination of the inner variable y+ and
outer variable �, and U is the pure e¤ect of the wall. The two similarity numbers can well
collapse mean velocity pro�le data with di¤erent moderate and large Reynolds numbers
into a single universal pro�le. We then propose an arctangent law for the bu¤er layer and
a general log law for the outer region in terms of (Y;U). From Milikan�s maximum velocity
law and the Princeton superpipe data, we derive the von Kármán constant � = 0:43 and the
additive constant B � 6. Using an asymptotic matching method, we obtain a self-similarity
law that describes the mean velocity pro�le from the wall to axis; and embeds the linear
law in the viscous sublayer, the quartic law in the bursting sublayer, the classic log law
in the overlap, the sine-square wake law in the wake layer, and the parabolic law near
the pipe axis. The proposed arctangent law, the general log law and the self-similarity
law have been con�rmed with the high-quality data sets, with di¤erent Reynolds numbers,
including those from the Princeton superpipe, Loulou et al., Durst et al., Perry et al., and
den Toonder and Nieuwstadt. Finally, as an application of the proposed laws, we improve
the McKeon et al. method for Pitot probe displacement correction, which can be used to
correct the widely used Zagarola and Smits data set.

Nomenclature

A = constant in the arctangent law, Eq. (19)
B = additive constant in the classic log law, Eq. (9)
B1 = additive constant in Millikan�s log law of the maximum velocity, Eq. (10)
C = model constant in the self-similarity law, Eq. (26)
Dp = diameter of Pitot probe in Eq. (30)
f = generic function
ki = coe¢ cients in the arctangent law, Eq. (19), where i = 1; 2; 3; � � �
U = similarity number representing the pure e¤ect of the wall, Eq. (14e)
u = mean velocity at distance y from the wall
umax = maximum velocity at the pipe center
u+max = dimensionless maximum velocity, u+max = umax=u�
u+ = dimensionless velocity scaled by the shear velocity, u+ = u=u�
u� = shear velocity
R = radius of pipe
Re = bulk Reynolds number
Re� = K�arm�an number
Y = similarity number combining the inner and outer variables, Eq. (14d)
y = distance from the wall
yc = true velocity at the center of the probe in Eq. (31)
y+ = inner variable, y+ = yu?=�

� = dimensionless velocity gradient, Eq. (31)

 = Österlund diagnostic function, Eq. (15)
�y = correction in position due to streamline displacement in Eq. (30)
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� = eddy viscosity
� = von K�arm�an constant in the classic log law, Eq. (9)
� = constant in the quartic law, Eq. (7)
� = kinematic viscosity of the �uid
� = outer variable, � = y=R
� = Coles wake strength
� = density of �uid
�w = wall shear stress
�� = turbulent shear stress
�+� = dimensionless turbulent shear stress in Eq. (5)

I. Introduction

PIPE turbulence has been studied over a century since Reynolds landmark experiment in 1883, but it is
still a great unsolved problem in classical physics (Nelkin 1992, Gad-el-Hak 1997). This is because the

Reynolds averaged governing equations always have more unknowns (statistical quantities) than equations;
and direct numerical simulation (DNS) of the Navier-Stokes equations for large Reynolds number is always
beyond the current computer capability. Therefore, dimensional reasoning, similarity and asymptotic analysis
become important tools in turbulence research (Gad-el-Hak 1997).
The purpose of dimensional reasoning, similarity and asymptotic analysis is to �nd a self-similairity

solution that is to �nd two similarity numbers so that they can collapse experimental velocity pro�les with
di¤erent Reynolds numbers from di¤erent facilities to a single universal pro�le. This procedure usually starts
with dimensional reasoning that gives

u

u�
= f

�yu�
�
;
y

R

�
(1a)

where u = mean velocity at distance y from the wall, u� = shear velocity, � = kinematic viscosity of the
�uid, and R = pipe radius. Equation (1a) is often rewritten as

u

u�
= f

�yu�
�
;Re�

�
(1b)

where Re� � Ru�=� is the Kármán number that expresses the ratio of the outer length scale R to inner
length scale �=u�, or

u

u�
= f

�yu�
�
;Re

�
(1c)

where Re is the bulk Reynolds number and a de�nition of friction factor has been applied. Equations
(1a)-(1c) are still complicated because of the two independents.
Our question in this paper is: Can we �nd two similarity numbers that, including the variables in Eqs.

(1a)-(1c), can collapse experimental velocity pro�les with di¤erent Reynolds numbers from di¤erent facilities
to a single universal pro�le? To answer this question, let us start with the following governing equation.

1

Re�

du+

d�
+

�

�u�R

du+

d�
= 1 � � (2)

Velocity Asymptote
Inner region (� ! 0)

viscous sublayer X � ! 0 X � ! 0 linear law, Eq. (4)
bursting sublayer X �� ! y+3 X � ! 0 quartic law, Eq. (7)
bu¤er layer X � � � X � ! 0 arctangent law, Eq. (22)
quasi-inertia layer X � > � X � ! 0

inertia layer (y+ !1) � << � �� � �w X � ! 0 log law, Eq. (9)
Outer region (Re� !1)
inertia layer (� ! 0) Re� !1 �� � �w X � ! 0 log law, Eq. (9)
wake layer Re� !1 X X X log-wake law, Eq. (11)
near the axis Re� !1 du+=d� ! 0 X X parabolic law, Eq. (12)
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In the above u+ � u=u�, � � y=R, � = eddy viscosity, and � = density of the �uid; the �rst term on the
left-hand-side is the viscous shear, and the second the turbulent shear; the �rst term on the right-hand-side is
the wall shear, and the second the pressure-gradient. We conventionally divide the �ow domain into the inner
and outer regions. The inner region is de�ned near the wall where � ! 0. Considering Re� � = yu�=� � y+
in Eq. (2), the inner region solution has the functional form,

u+ = f
�
y+
�

(3)

which is called the law of the wall (Schlichting 1979, p.605).
Unlike previous studies, we divide the inner region into �ve layers: the viscous sublayer, bursting sublayer,

bu¤er layer, quasi-inertia layer, and inertia layer, shown below Eq. (2). In the viscous sublayer, say y+ < 5,
turbulence is restricted by the wall, the eddy viscosity � ! 0. Equation (2), with the no-slip condition, gives
the linear law,

u+ = y+ (4)

This equation is the �rst asymptote for Eq. (3).
The sweep-ejection bursting process generates turbulence near the wall (Kline et al. 1967, Kim et al.

1971, Grass 1971, Grass et al. 1991). To re�ect this important phenomenon in the inner region, we term the
corresponding zone the bursting sublayer. From the mass conservation, Chapman and Kuhn (1986) showed
that the dimensionless turbulent shear, �+� , in this layer must follow a cubic law,

�+� = �y
+3 + � � � (5)

where � is determined experimentally. Equation (2) then becomes

du+

dy+
+ �y+3 + � � � = 1 (6)

which results in the following quartic law for the mean velocity,

u+ = y+ � �
4
y+4 + � � � (7)

The value of � is reported about (4� 8)� 10�4 in literature (Buschmann and Gad-el-Hak 2005). Using the
Loulou et al. (1997a, b) DNS data near the wall, we obtain

� =
1

1150
= 8:7� 10�4 (8)

which is valid till about y+ = 8, shown in Fig. 1. Thus, the bursting sublayer is de�ned between y+ = 5
and 8, which is very thin but important in turbulence production and modeling. The quartic law of Eq. (7)
is the second asymptote for Eq. (3).
We de�ne the bu¤er layer between y+ = 8 and 30 where the viscous and turbulent shears are comparable.

Spalding�s law of the wall (White 1991, p.415) is often used to describe this layer. Except for its implicit
form, McKeon et al. (2003) showed that it cannot well approximate the new re�ned experimental data. The
other popular one is van Driest�s law of the wall (Schliching 1979, p.604). For example, Guo et al. (2005)
combined it with the modi�ed log-wake law to describe the entire turbulent boundary layer �ows. But it
cannot re�ect the cubic turbulent shear or the quartic velocity pro�le in the bursting sublayer (Buschmann
and Gad-el-Hak 2005). We will propose an arctangent law for this layer later.
Recently the Princeton superpipe experiments (Zagarola and Smits 1998, McKeon et al. 2004) revealed

that between the bu¤er and inertia layers, a power law layer exists, where the turbulent shear prevails but
the viscous shear cannot be neglected. We term the corresponding zone a quasi-inertia layer. Like the bu¤er
layer, we cannot derive an analytic asymptote in this layer; the power law is simply empirical.
The inertia layer has been well established where y+ ! 1 and the viscous e¤ect can be completely

neglected. In the 1930s Prandtl and von Kármán (Schlichting 1979, Chaps. 29 and 30) reasoned that Eq.
(3) in this layer can be expressed by the log law,

u+ =
1

�
ln y+ +B (9)
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Figure 1. Check of the linear and quartic asymptotes with data of low Re turbulence where the laminar and
bursting sublayers are ampli�ed.

where � = von Kármán constant, and B = additive constant. From Eq. (2) we can see that there is an
overlap when y+ !1 in the inner region and � ! 0 in the outer region. Milikan (1938), applying asymptotic
matching, proved that Eq. (3) must be the logarithmic function above. The di¢ culty in applying Eq. (9)
is that there does not exist an objective method to determine the overlap range, which causes the di¤erent
values of � and B in literature (Zanoun et al. 2003). In fact, while deriving Eq. (9), Milikan simultaneously
obtained that the maximum velocity umax must also follow a log law (Panton 2005),

u+max =
1

�
lnRe�+B1 (10)

where u+max � umax=u�, the von Kármán constant � is the same as that in Eq. (9), and B1 is another
constant. The importance of Eq. (10), which is often overlooked in literature, is that it provides an objective
way to determine the von Kármán constant � where we do not need to concern the range of the overlap.
Equation (9) is our third asymptote for Eq. (3).
Including the overlap, the outer region is also called the core region. The prerequisite for this region is

Re� ! 1, shown below Eq. (2); otherwise, an outer region does not exist at all. Since the log law of Eq.
(9) is a common term between the inner and outer regions, Coles (1956) and Hinze (1975, p.698) extended
the log law beyond the overlap by adding the law of the wake, i.e.

u+ =

�
1

�
ln y+ +B

�
| {z }

the log law

+
2�

�
sin2

��

2| {z }
the wake law

(11)

where � = wake strength. Equation (11) is in the form of Eq. (1a). Experiments (Hinze 1975, p.699) showed
that the log-wake law above is a good approximation till about 90% of the radius from the wall, � � 0:9;
but it is not valid near the axis since it does not meet the axisymmetric requirement, du=dy = 0 at � = 1.
Equation (11) is a widely accepted experimental fact in the wake layer.
The last layer is the zone near the axis where the axisymmetric requirement results in the parabolic

defect law below,
u+max � u+ / (1� �)

2 (12)

which can be derived from a Taylor series expansion at � = 1 (Guo and Julien 2003). To force the log-wake
law of Eq. (11) to meet the above parabolic asymptote near the axis, Guo and Julien added a correction
term to Eq. (11),

u+ =

�
1

�
ln y+ +B

�
+
2�

�
sin2

��

2
� �3

3�
(13)
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The cubic term corrects the log law gradient to be zero at the axis and is intrinsically a part of the e¤ect of
the wall. Guo and Julien pointed out that the sine-square function in Eq. (13) re�ects the pressure-gradient
e¤ects and the wake strength � is about the same as the von Kármán constant, � � �, for large Reynolds
number. Equation (13) has been veri�ed with the Zagarola and Smits superpipe data set in the outer region.
We will take it as our preliminary analysis to formulate the hypotheses in this paper.
In summary, we have four asymptotes, Eqs. (4), (7), (9) and (12), which result from the boundary

conditions, asymptotic matching and mass conservation. Any reasonable pipe turbulence model should
embed these four asymptotes. In addition, if possible, it should contain the sine-square wake law. The
modi�ed log-wake law of Eq. (13) has included Eqs. (9) and (12) as well as the sine-square wake law.
Although the Barenblatt power law (Barenblatt 1993; Barenblatt et al. 1997a, 1997b) caused a stir on

wall turbulence research in the last decade (Cipra 1996), it does not meet any of the above asymptotes so
that we omit it in this brief review. In addition, for recent progresses on the power law and composite
expansions, readers are referred to Barenblatt et al. (1997b), Gorge and Casterlo (1997), Afzal (2001), and
Panton (2005). Finally, several high quality experimental studies on the e¤ects of Reynolds number have
been reported in the last decade, they are fundamental to turbulence research and will be detailed when
used.
The purpose of this paper is to solve the mean �ow similarity problem in two steps: First, we construct

two compound similarity numbers to collapse mean velocity pro�le data with di¤erent Reynolds numbers
to a single universal pro�le. Then, by applying asymptotic analysis, we propose a self-similarity law that
describes the entire mean �ow pro�le and meets all asymptotic requirements.

II. Hypotheses of self-similarity

A. Formulation of hypotheses

We have mentioned that we take Eq. (13) as our preliminary analysis. Recently, we reanalyzed the Zagarola
and Smits superpipe data set and found that if the number 3 in the correction term is changed to be 4, Eq.
(13) �ts the experimental data even better. Thus, we rewrite Eq. (13) as

u+ =

�
1

�
ln y+ +B

�
+
2�

�
sin2

��

2
� �4

4�
(14a)

By considering � � � (Guo and Julien 2003), we can rearrange the equation above as

u+ � 2 sin2 ��
2
=
1

�

�
ln y+ � �

4

4

�
+B (14b)

or
U =

1

�
lnY +B (14c)

where

Y � y+ exp
�
��

4

4

�
(14d)

is a combination of the inner and outer variables, and

U � u+ � 2 sin2 ��
2

(14e)

is the pure e¤ect of the wall. We call Y and U two compound similarity numbers that switch to the inner
variables y+ and u+, respectively, when � ! 0; we call Eq. (14c) the general log law that is expected to be
valid in the whole outer region and reduces to the classic log law in the overlap where � ! 0.
Our hypotheses are based on the analysis of Eqs. (14a)-(14e).
Hypothesis I: For large Reynolds number turbulence, say Re > 105, a pure outer region exists. The

mean �ow in the outer region can be described with the general log law of eq.(14c), where � and B are
universal constants determined experimentally.
Prediction I: We can test Hypothesis I in two ways: (a) if it is true, then the plot of 
 = Y dU=dY versus

Y for di¤erent Reynolds numbers must be a universal constant 1=�, i.e.


 = Y
dU

dY
=
1

�
= const (15)
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where the value of � is determined by Eq. (10), and 
 is called a diagnostic function for the log law according
to Österlund et al. (2000); (b) if it is true, then experimental data with di¤erent Reynolds numbers in the
outer region must collapse to a single straight line in coordinates (lnY; U).
Hypothesis II: In the inner region where � ! 0, the two similarity numbers become Y ! y+ and

U ! u+, which is the law of the wall, Eq. (3). We then hypothesize that the two similarity numbers can also
collapse experimental data in the inner region to a single pro�le. Consequently, the two similarity numbers
are expected to describe the entire velocity pro�le from the wall to axis.
Prediction II: If Hypothesis II is true, experimental pro�les with di¤erent Reynolds numbers must fall

into a single curve for the entire �ow domain.
Hypothesis III: For moderate Reynolds number, say 104 � Re < 105, the e¤ect of viscosity may

penetrate till the axis. In such a case, a pure outer region may not exist at all. But in terms of (Y;U), the
�ow near the pipe axis might be similar to that near the wall in large Reynolds number turbulence.
Prediction III: If Hypothesis III is true, then experimental pro�les with moderate Reynolds numbers

must superpose with the near wall data of large Reynolds number �ows.
We exclude the low Reynolds number e¤ect, say Re < 104, in the above hypotheses.

B. Test of the hypotheses

Data sets: The test of the above three hypotheses needs high quality experimental data sets, which have
been available in a comprehensive report by the Working Group 21 of the Fluid Dynamics Panel of AGARD
(1997). Five pipe data sets are compiled in Chapter 5 of the report. They are PCH00 by Loulou et al.
(1997a, b) that is a DNS set and has been used in determining the asymptote of Eq. (7) in Fig. 1, PCH01
by Durst et al. (1995, 1997), PCH02 by Perry et al. (1986, 1997), PCH03 by den Toonder and Nieuwstadt
(1997a, b), and PCH04 by Zagarola and Smits (1997, 1998) . Besides, we also use the recent Princeton
superpipe data set by McKeon et al. (2004) for this evaluation. The �ow characteristics for each set are
described when used.
Determination of the log law constants: The general and classic log laws have the same constants. Let

us determine the values of � and B by using the Milikan asymptote of Eq. (10). This method makes no
assumptions as to the nature of turbulent motions. We plot the maximum velocities of the Princeton data
sets (Zagarola and Smits 1997, McKeon et al. 2004) in Fig. 2, according to Eq. (10). The Zagarola and
Smits set gives (�;B1) = (0:44; 7:86) while the McKeon et al. set leads to (�;B1) = (0:43; 7:30). Since the
Zagarola and Smits set is not corrected for the Pitot probe displacement (McKeon et al. 2003) while the set
of McKeon et al. is fully corrected for e¤ects of viscosity, turbulence, velocity gradient and the presence of
a wall, we take the later for the standard values of � and B1 in this paper, i.e.

� = 0:43; B1 = 7:3 (16)

On the other hand, we can �nd the maximum velocity with Eq. (14a),

u+max =
1

�
lnRe�+

�
B + 2� 1

4�

�
(17)

Comparing it with Eq. (10) gives

B1 = B + 2�
1

4�

Substituting the values of Eq. (16) gives
B = 5:9 � 6 (18)

With the constants in Eqs. (16) and (18), we plot the maximum velocity of Eq. (10) and the classic log law
of Eq. (9) in Figs. 4a, 5a, 6a and 7a. Except for Fig. 7a, good agreement between the log laws and the data
can be observed. In particular, the von Kármán constant � = 0:43 works excellently for the envelope in Fig.
6a, which is from a di¤erent facility from the Princeton sets. For Fig. 7a, we notice that the classic log law
fails to describe this data set since it cannot unify the data beyond the bu¤er layer, with di¤erent Re, to a
single straight line. We will further discuss it in the following sections.
Test I: This test corresponds to Hypothesis I and Prediction I where Reynolds number is large. The two

Princeton superpipe data sets (Zagarola and Smits 1997, McKeon et al. 2004) and the Perry et al. (1986,
1997) set are suitable to this test. In the Princeton sets, the velocities were measured with Pitot probes; the
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Figure 2. Determination of the von Karman constant by the maximum velocity: (a) the Zagarola and Smits
data set; (b) the McKeon et al. data set.

bulk Reynolds number Re is between 31� 103 and 36� 106; and the Kármán number is between 1700 and
530�103. The detailed information can be found in Zagarola (1996) who surveyed 26 mean velocity pro�les.
Although the pro�les lack the displacement correction, they do not much a¤ect the qualitative evaluation of
the hypotheses. From the same facility, McKeon et al. (2004) repeated the measurements by Zagarola and
further measured 25 velocity pro�les that are fully corrected for the e¤ects of viscosity, turbulence, velocity
gradient and the presence of the wall. In the Perry set, the velocities were also measured with Pitot probes,
Re = (75� 200)� 103 and Re� = 1586� 3838.
We �rst plot the superpipe data in Fig. 3 according to the diagnostic function of Eq. (15). It shows that

the value of 
 is indeed the constant 
 = 1=� = 1=0:43 = 2:33 when Y � 1000, which is consistent with
our Prediction I. This also implies that we can de�ne the outer region as Y � 1000. We then plot the three
data sets in Figs. 4, 5 and 6, respectively, in both the conventional inner coordinates (ln y+; u+) and our
compound similarity coordinates (lnY; U). As aforementioned, there exists a log layer in Figs. 4a, 5a and 6a,
but the inner coordinates cannot collapse all the outer region data to a single curve for di¤erent Reynolds
numbers. Nevertheless, in Figs. 4b, 5b and 6b, all the data in the outer region, say at least Y � 1000,
collapse to a single straight line. This is in full agreement with our Prediction I so that Hypothesis I is
con�rmed experimentally. In addition, we plot the general log law of Eq. (14c) in Figs. 4b, 5b and 6b, which
show excellent agreement although the value of B = 6 slightly overestimates the Perry data set. We found
that the Perry data set corresponds to a value of B = 5:6. This slight di¤erence might be caused by the wall
roughness or di¤erent Pitot probe correction in the Perry set.
Test II: Hypothesis II and Prediction II can also be tested with Figs. 4b, 5b and 6b where both the

conventional inner coordinates and our compound similarity coordinates can collapse the inner region data
to a single pro�le. Nevertheless, only the compound similarity coordinates (Y;U) can unify the two regions
to a single curve, as expected in Prediction II.
Test III: This test checks Hypothesis III and Prediction III for moderate Reynolds numbers where Re is

in the order of 104. In fact, Figs. 4, 5 and 6 have included a few of pro�les with moderate Re. With LDA
technique, den Toonder and Nieuwstadt (1997a, b) measured four velocity pro�les with Re = 4900� 24580
or Re� = 328� 1380. This set has been used to compare the bu¤er layer measurements and calibrate Pitot
probes (Zagarola et al. 1997, McKeon et al. 2003). We plot all the four pro�les in the conventional inner
coordinates (ln y+; u+) in Fig. 7a and the three moderate Re pro�les in our compound similarity coordinates
(lnY; U) in Fig. 7b, respectively. Figure 7a shows that a pure log law layer does not exist for this set due
to the small Reynolds numbers, as stated in Hypothesis III. However, in Fig. 7b, our similarity numbers
can well superpose the measured data with di¤erent moderate Re to a single curve. To check if the data of
moderate Re superpose with the near wall data of large Re, we superpose Figs. 5b, 6b and 7b to produce
Fig. 8. As expected in Prediction III, the moderate Re data coincide with the lower part of large Re data.
Note that: (1) we exclude the Zagarola and Smits set in Fig. 8 since its uncorrected data in the bu¤er layer
have large errors; and (2) we cannot estimate the von Kármán constant with the den Toonder set since the
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(7 representative profiles)
The maximum velocity, Eq. (10)

The classic log law, Eq. (9)

The arctagent law, Eq. (22)
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(b)

Figure 4. Test of the compound similarity hypothesis with data of Zagarola and Smits: (a) representative
velocity pro�les with di¤erent Reynolds numbers in wall coordinates (y+; u+); (b) 26 measured velocity pro�les
in compound similarity coordinates (Y; U). This data set inspired the generation of the compound similarity
hypothesis.
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(25 measured profiles)
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Figure 5. Test of the compound similarity hypothesis with data of McKeon et al.: (a) representative velocity
pro�les with di¤erent Reynolds numbers in wall coordinates (y+; u+); (b) 25 measured velocity pro�les in
compound similarity coordinates (Y; U).
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Figure 6. Test of the compound similarity hypothesis with data of Perry et al.: (a) in wall coordinates (y+; u+);
(b) in compound similarity coordinates (Y; U).
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Figure 7. Test of the compound similarity hypothesis with data of den Toonder and Nieuwstadt: (a) in wall
coordinates (y+; u+); (b) in compound similarity coordinates (Y; U).
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Figure 8. Check of the universality of the self-similarity law with both large and moderate Reynolds numbers
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prerequisite, Re� ! 1, does not exist. To distinguish such a case from the real outer region, we propose a
quasi-inertia layer between the bu¤er and overlap layers, shown in Fig. 8.
In summary, we have answered the question raised in this paper. That is, our two compound similarity

numbers (Y; U) can well collapse experimental mean velocity pro�les with di¤erent moderate and large
Reynolds numbers to a single universal pro�le. In other words, a self-similarity exists in terms of (Y;U) for
the mean �ows with di¤erent Reynolds numbers.

III. Self-similarity law

A. The arctangent law in the bu¤er layer

To model the universal velocity pro�le in Fig. 8, we start with the bu¤er layer, which is de�ned between
y+ = 8 and 30. We consider the quasi-inertia layer a transition from the bu¤er to the inertia (overlap) layer;
and the bu¤er layer connects the inertia layer through the additive constant B. We then conjecture that the
bu¤er layer model must tend to a constant when y+ !1. The arctangent function has such characteristics
so that we assume the velocity pro�le in the bu¤er layer can be approximated with a series of arctangent
functions,

u+ =
1X
i=1

ki arctan
i y

+

A
(19)

where A is a characteristic value of y+ in the bursting sublayer. The values of A and coe¢ cients ki are
determined with the asymptote of Eq. (7) and experimental data.
Since the secondary term in Eq. (7) is quartic, let us expand Eq. (19) to the forth power, i.e.

u+ = k1 arctan
y+

A
+ k2 arctan

2 y
+

A
+ k3 arctan

3 y
+

A
+ k4 arctan

4 y
+

A
+ � � �

=
k1
A
y+ +

k2
A2
y+2 +

�
k3
A3

� k1
3A3

�
y+3 +

�
k4
A4

� 2k2
3A4

�
y+4 + � � � (20)

Comparing it with Eq. (7) gives

k1 = A; k2 = 0; k3 =
A

3
; k4 = �

�A4

4
= � A4

4600
(21)

where Eq. (8) has been used. This means we can approximate Eq. (19) as

u+ = A arctan
y+

A
+
A

3
arctan3

y+

A
+ k4 arctan

4 y
+

A
(22)

By applying the data set of Durst et al. (1995, 1997) where the Reynolds numbers are relatively low and
the bu¤er layers are ampli�ed in the LDA measurements, we �t the value of A to be

A = 7 (23)

and from Eq. (21) we get
k4 = �0:52 (24)

Figure 9 reveals that the arctangent law of Eq. (22) agrees very well with the data till y+ = 30. Note that
this set was not used in the test of the hypotheses because fully developed �ows near the axis are not well
established, as described by the authors (Durst et al. 1997). Equation (22) is also supported by Figs. 5a, 6a
and 7a. No surprising, the data in Fig. 4a deviate from the arctangent law considerably, due to the lack of
displacement correction of the Pitot probe. As an application of this study, we will correct this data set later
in this paper. Besides, we did not plot Eq. (22) in Fig. 1 where the Re is too low to have a fully developed
bu¤er layer.
To match the arctangent law of Eq. (22) with the general log law of Eq. (14c), we rewrite Eq. (22)

according to Hypothesis II,

U = A arctan
Y

A
+
A

3
arctan3

Y

A
+ k4 arctan

4 Y

A
(25)

which is compared with data in 4b, 5b, 6b, 7b, and 8. The agreement is similar to those in Figs. 4a, 5a, 6a
and 7a.
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Figure 9. Check of the arctangent law in the bu¤er layer

B. The self-similarity law

A complete self-similarity law can be constructed by matching the arctangent law of Eq. (25) with the
general log law of Eq. (14c),

U = A arctan
Y

A
+
A

3
arctan3

Y

A
+ k4 arctan

4 Y

A
+ ln

"
1 +

�
Y

C

�1=�#
(26)

where the values of �, A and k4 are speci�ed with Eqs. ( 16), (23) and (24). The value of C is determined
by letting Y !1, i.e.

U =
�A

2
+
A

3

��
2

�3
+ k4

��
2

�4
� 1

�
lnC| {z }

B

+
1

�
lnY (27)

Comparing it with the general log law of Eq. (14c) gives

C = exp

�
�

�
�A

2
+
A

3

��
2

�3
+ k4

��
2

�4
�B

��
(28)

Substituting the values of �, A, k4 and B = 6 gives

C = 107 (29)

Figure 8 compares the self-similairity law, Eq. (26), with the data sets of McKeon et al. (2004), Perry et al.
(1997) and den Toonder and Nieuwstadt (1997a, b). To minimize the data band, all data are denoted with
the symbol of dot. The �gure shows that the self-similarity law can really clone the experimental pro�les
very well from the wall to axis.
In summary, we have found two compound similarity numbers Y and U that can collapse experimental

velocity pro�les with di¤erent Reynolds numbers to a single pro�le; the empirical self-similarity law of Eq.
(26) embeds all asymptotic requirements and the sine-square wake law and can describe the entire velocity
pro�le from the wall to axis.

IV. Application: Displacement correction for Zagarola and Smits superpipe
data set

The Zagarola and Smits (1997, 1998) superpipe data have been widely cited in literature (Barenblatt
1997a, Perry et al. 2001, Guo and Julien 2003, and many others). However, the uncorrected data due to the
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Figure 10. Comparison of the corrected data of Zagarola and Smits with the self-similarity law

velocity gradient or streamline displacement caused large errors in the bu¤er layer. McKeon et al. (2003)
proposed the following equation for the Pitot probe correction:

�y

Dp
= 0:15 tanh

�
4
p
�
�

(30)

where �y = correction in position due to streamline displacement, Dp = diameter of Pitot probe, and � =
Dimensionless velocity gradient de�ned by

� =
1

2

Dp
u (yc)

du

dy

����
y=yc

(31)

where u (yc) = true velocity at the center of the probe y = yc. To apply the above equations, we must know
the accurate values of the velocity and velocity gradient at the center of the probe, which can now be found
by the arctangent law of Eq. (22) for the bu¤er layer or the self-similarity law of Eq. (26) for the entire
pro�le. Figure 10 shows the self-similarity law with the corrected data for the �rst 10 pro�les where there
are measurement data in the bu¤er layers. Since the self-similarity law has been veri�ed in the last section,
we believe the correction is a good representation of the true measured data.

V. Summary and Conclusions

From the preliminary analysis of the modi�ed log-wake law, Eqs. (13) and (14a), we have proposed
two compound similarity numbers (Y; U) to describe the pipe mean velocity pro�les with di¤erent Reynolds
numbers. As shown in Eqs. (14d) and (14e), the number Y expresses a combination of the inner variable
y+ = yu�=� and outer variable � = y=R, and the number U is the pure e¤ect of the wall where the e¤ect of
the pressure-gradient has been subtracted.
With the two compound similarity numbers, we made three hypotheses for large and moderate Re

turbulence: i) for large Re, the outer region can be described with the general log law of Eq. (14c); ii) for
large Re, the two similarity numbers can also collapse the inner region data to a single pro�le; and iii) in
terms of (Y; U), there is a similarity between moderate and large Re turbulence.
These hypotheses have been con�rmed with experimental data. i) The Princeton superpipe data sets

and the Perry et al. experiments con�rmed that the outer region �ow, where Y � 1000, indeed follows the
general log law of Eq. (14c), as shown in Figs. 4b, 5b and 6b. The von Kármán constant and the additive
constant are determined to be (�;B) = (0:43; 6) with Milikan�s maximum velocity equation of Eq. (10) and
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the McKeon et al. superpipe data set. ii) Figures 4b, 5b and 6b also con�rmed that the similarity numbers
(Y; U) can collapse the inner �ow data to a single pro�le, but a quasi-inertia layer exists between the bu¤er
layer and logarithmic overlap. iii) The den Toonder and Nieuwstadt data set in Figs. 7b and 8 con�rmed
that the two compound similarity numbers can superpose moderate Re data with those of large Re. In
general, the two numbers can collapse large and moderate Re mean velocity pro�le data to a single universal
pro�le.
To model the bu¤er layer velocity pro�le, we proposed an arctangent law of Eq. (22) or (25) that

compares with the data in Figs. 4, 5, 6, 7, 8 and 9. Matching the arctangent law and the general log law, we
obtained the self-similarity law of Eq. (26). Figure 8 con�rms that the self-similarity law can describe the
entire velocity pro�le from the wall to axis and satis�es all asymptotic requirements speci�ed in Eqs. (4),
(7), (9) and (12) as well as the widely accepted since-square wake law.
As an application of the proposed laws, we improved the McKeon displacement correction for Pitot probe

data, which can be used to correct the widely used Zagarola and Smits superpipe data set. Finally, we expect
that the two compound similarity numbers and the self-similarity law can be extended to channel �ows and
turbulent boundary layers.
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