152 research outputs found
Analysis of feasibility of a new core catcher for the in-vessel core melt retention strategy
This study deals with the feasibility study of a new in-vessel core melt retention (IVCMR) strategy capable to extend the coping period in the event of adverse situations, involving the melting of the core. Since Fukushima accident, many studies have been carried out to resolve the severe accident mitigation issues related to the corium stabilization inside and outside the reactor vessel. This is in fact one of the most relevant safety issues to secure LWRs from the point of view of severe accident mitigation and containment integrity. As for the corium stabilization inside the reactor vessel, in this study it is proposed a new IVCMR concept, developed at the University of Pisa, based on the adoption of an original core catcher design made of batches of ceramic material. By profiting of its low thermal conductivity, this core catcher is capable to retard the heat-up of the lower head of the vessel during the phase of relocation of the corium. To support the feasibility of its design analytical and numerical analyses have been performed assuming homogeneous pool condition. Results show that the adoption of the proposed core catcher solution extends the severe accident coping period: after 1 h from the initiating event, the maximum temperature of the vessel wall is below the limit for which localized failure may appear
Preliminary analysis of an aged RPV subjected to station blackout
Today, 46% of operating Nuclear Power Plants (NPP) have a lifetime between 31 and 40 years, while 19% have been in operation for more than 40 years. Long Term Operation (LTO) is an urgent requirement for all of the nuclear industry. The aim of this study is to assess the performance of a reactor pressure vessel (RPV) subjected to a station blackout (SBO) event. Alterations suffered by the material properties and creep at elevated temperatures are considered. In this study, coupling between MELCOR and Finite Element Method (FEM) codes is carried out. In the Finite Element (FE) model, the combined effects of ageing and creep are implemented through degraded material properties and a viscoplastic model. The reliability of the model is validated by comparing the FOREVER/C1 experimental results. The results show that the RPV lower head bends downwards with a maximum radial expansion of about 260 mm and RPV thermomechanical properties are reduced by more than 50% at high temperatures. The effects of ageing, creep and long heat-up strongly affect the resistance of the RPV system until the point of compromising it in the absence of/delayed emergency intervention. Aged RPV at end-of-life may collapse earlier, and in less time, with the same accidental conditions
Detailed neutronic study of the power evolution for the European Sodium Fast Reactor during a positive insertion of reactivity
Abstract The new reactor concepts proposed in the Generation IV International Forum require the development and validation of new components and new materials. Inside the Collaborative Project on the European Sodium Fast Reactor, several accidental scenario have been studied. Nevertheless, none of them coped with mechanical safety assessment of the fuel cladding under accidental conditions. Among the accidental conditions considered, there is the unprotected transient of overpower (UTOP), due to the insertion, at the end of the first fuel cycle, of a positive reactivity into the reactor core as a consequence of the unexpected runaway of one control rod. The goal of the study was the search for a detailed distribution of the fission power, in the radial and axial directions, within the power peaked fuel pin under the above accidental conditions. Results show that after the control rod ejection an increase from 658 W/cm 3 to 894 W/cm 3 , i.e. of some 36%, is expected for the power peaked fuel pin. This information will represent the base to investigate, in a future work, the fuel cladding safety margin
RELAP5/SIMMER-III code coupling development for PbLi-water interaction
A major safety issue in the Water-Cooled Lead-Lithium Breeding Blanket (WCLL-BB) system foreseen for fusion reactor is the interaction concerning the primary coolant (water) and the neutron multiplier (PbLi), due to a hypothetical tube rupture in the coolant circuit. This scenario involves an exothermic chemical reaction between PbLi and water with the production of hydrogen, in addition to critical interactions in a complex multiphase system in non-thermal equilibrium. In recent years the PbLi/water reaction was successfully implemented in the SIMMER-III code and validated against data from the LIFUS5/Mod3 experimental campaign. However, due to limitations of SIMMER-III, this work was restricted to the prediction of the phenomena inside the vessel, neglecting the simulation of the injection line. Nevertheless, since the injection line may actually have an important effect on the development of the transient, the simulation of the whole facility would be highly desirable. Indeed, the University of Pisa recently developed a coupling methodology between the SIMMER-III and RELAP5/Mod3.3 codes and applied it to simple single-phase cases. In this paper the complete simulation of the LIFUS5/Mod3 facility is presented, with the injection line modelled through RELAP5. Furthermore, all the complex aspects of the phenomena inside the reaction tank were included: the multiphase system and the interaction between water and PbLi with the chemical reaction and the production of hydrogen were modelled by SIMMER. Preliminary results are presented, showing that the coupling methodology can be effectively employed for the prediction of the chemical and thermal-hydraulic behaviour of complex loop experimental facilities
Biodosimetry of ionizing radiations at different LET levels through cytogenetic endpoints in Allium cepa meristems
- This paper aims to enhance our understanding of the effects of ionizing radiation using radiobiology and biodosimetry techniques applied to living plant organisms. Plants are particularly suitable for this purpose as they are highly sensitive to detecting potential genotoxic agents in the environment and their use allows us to avoid using animals in research in compliance with the 3R principle. Currently, the onion ( Allium cepa ) is recognized as a valid model for the analysis of environmental pollutants but has been relatively unexplored as an indicator of radiation exposure. In this study, analyses of the genotoxicity of X and alpha radiation were conducted using the micronucleus test and mitotic index analysis. Our results indicate that Allium cepa can be considered a valid alternative model to animal use for assessing the effects of ionizing radiation. In particular, it was found that alpha radiation caused significant damage, as evidenced by an increased number of micronuclei, which was 20 times higher compared to X-ray radiation. This was further confirmed through the observation of the effective dose parameter, as determined by the analysis of various weight factors associated with different types of radiation
Multicentre investigation of neutron contamination at cardiac implantable electronic device (CIED) location due to high-energy photon beams using passive detectors and Monte Carlo simulations
Radiotherapy treatments involving LINACs operating at accelerating potentials >10 MV generate (photo)neutrons which deliver dose to patients also outside the target volume. This effect is particularly relevant for patients with cardiac implantable electronic devices (CIEDs), which can be damaged by the therapeutic irradiation. In the last few years, there has been a rising interest in this issue, and it seems that damage to CIEDs is primarily associated with the thermal component of the photoneutron field. In particular, a recent study led by Politecnico di Milano considered CIEDs from various manufacturers and showed that some of these devices can be damaged after an irradiation with a thermal neutron fluence of about 10^9 cm^-2. The present work results from a collaboration among Politecnico di Milano, the University of Pisa, the University of Trieste and three Italian hospitals located in Lucca, Trieste and Varese, respectively, and it is primarily aimed at evaluating the thermal neutron fluence in CIED region for some high-energy treatments delivered at 15 and 18 MV and to determine whether it is comparable to the critical value given above, which has been experimentally determined to be potentially harmful for CIEDs. Thermal neutron fluence was measured through CR-39 detectors and TLDs, which were housed inside a BOMAB-like phantom mimicking the patient’s trunk. The experimental sessions involved two models of LINAC, Varian Clinac DHX (Varese hospital) and Elekta Synergy (Lucca and Trieste hospitals). The experimental results show that the treatments considered in this study can lead to a thermal neutron fluence in the cardiac region comparable to the critical value. Furthermore, detailed Monte Carlo geometries for the facilities involved in this project were developed with the MCNP code (v. 6.2), and they were tested by comparing simulation results to measurements considering some benchmark irradiation plans. Bubble detectors were also employed for fast neutron fluence measurements to be compared to simulation outputs. These computational models stand out as promising tools for the investigations required in this work, and they can be used for further studies also extending their use to analogous facilities hosting the same models of LINACs
Calibration of PADC-based neutron area dosemeters in the neutron field produced in the treatment room of a medical LINAC
a b s t r a c t PADC-based nuclear track detectors have been widely used as convenient ambient dosemeters in many working places. However, due to the large energy dependence of their response in terms of ambient dose equivalent (H * (10)) and to the diversity of workplace fields in terms of energy distribution, the appropriate calibration of these dosemeters is a delicate task. These are among the reasons why ISO has introduced the 12789 Series of Standards, where the simulated workplace neutron fields are introduced and their use to calibrate neutron dosemeters is recommended. This approach was applied in the present work to the UAB PADC-based nuclear track detectors. As a suitable workplace, the treatment room of a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa), was chosen. Here the neutron spectra in two points of tests (1.5 m and 2 m from the isocenter) were determined with the INFN-LNF Bonner Sphere Spectrometer equipped with Dysprosium activation foils (Dy-BSS), and the values of H * (10) were derived on this basis. The PADC dosemeters were exposed in these points. Their workplace specific H*(10) responses were determined and compared with those previously obtained in different simulated workplace or reference (ISO 8529) neutron fields
Cutting-edge R&D activities of CIRTEN in support of the Technology Park annexed to the Italian National Repository of radioactive waste
R&D activities taking place at the institutions belonging to Consorzio Interuniversitario per la Ricerca TEcnologica Nucleare are here presented and discussed. A special focus is on Technology Park annexed to the Italian National Repository of radioactive waste
The DUNE far detector vertical drift technology. Technical design report
DUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
- …