2 research outputs found

    The Amazon Tall Tower Observatory (ATTO): Overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols

    Get PDF
    The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It has already been changed significantly by human activities, and more pervasive change is expected to occur in the coming decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region, as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at five to eight different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are being made above the canopy as well as in the canopy space. They include aerosol light scattering and absorption, fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. In this paper, we discuss the scientific context of the ATTO observatory and present an overview of results from ecological, meteorological, and chemical pilot studies at the ATTO site. © Author(s) 2015

    Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam

    No full text
    The annual and regular flood pulse is the main hydrologic feature found in the large floodplains along Amazonian rivers triggering nutrient cycles, growth rhythms and life cycles of the biota as well as primary and secondary productivity. The construction of hydroelectric dams in the Amazon basin substantially alters the hydrologic regime resulting in severe social, ecological and environmental impacts. While the majority of studies evaluate these impacts in the area of the reservoir and the surroundings of the dam, we focus on disturbances in floodplain forests downstream of the hydroelectric power plant, in this case the Balbina dam, constructed in the 1980s damming the Uatumã River (Central Amazonia). The lowest topographies in the floodplain forests downstream of the dam are dominated by dead trees of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae), a flood-tolerant species forming annual tree rings in consequence of the flood pulse. In this study we evidence alterations in the magnitude and frequency of the hydrologic conditions of the Uatumã River downstream of the hydroelectric power plant comparing the pre-dam (1973–1982) and post-dam (1991–2012) period analyzing a set of biologically relevant hydrologic indicators. To investigate the relationship between the hydrologic changes caused by the dam and the year of death of individuals of M. acaciifolium we use cross-dating techniques (dendrochronology) and radiocarbon dating (14C) as two independent methods. Cross sections of 17 dead individuals were analyzed and individual tree-ring series cross-dated with a well-replicated living trees’ chronology of the same species and region (1804–2012). The outermost tree ring was isolated to perform radiocarbon dating. The dendrochronological and 14C proxies matched in 88% of the cases, while in the 12% mismatched maximum deviation at least one year. Trees died during periods of consecutive years of inundation, up to two decades after the implementation of the hydroelectric dam. Considering the planning of construction of several dozen dams in the Amazon region there is a critical need to include the downstream impacts in all discussions of hydroelectric implementation. © 201
    corecore