11 research outputs found

    Brazilian Propolis: Correlation Between Chemical Composition and Antimicrobial Activity

    Get PDF
    The chemical composition of ethanol extracts from samples of Brazilian propolis (EEPs) determined by HPLC and their activity against Trypanosoma cruzi, Staphylococcus aureus, Streptococcus pneumoniae, Klebisiella pneumoniae, Candida albicans, Sporothrix schenckii and Paracoccidioides brasiliensis were determined. Based on the predominant botanical origin in the region of samples' collection, the 10 extracts were separated into three groups: A (B. dracunculifolia + Auraucaria spp), B (B. dracunculifolia) and C (Araucaria spp). Analysis by the multiple regression of all the extracts together showed a positive correlation, higher concentrations leading to higher biological effect, of S. aureus with p-coumaric acid (PCUM) and 3-(4-hydroxy-3-(oxo-butenyl)-phenylacrylic acid (DHCA1) and of trypomastigotes of T. cruzi with 3,5-diprenyl-4-hydroxycinnamic acid derivative 4 (DHCA4) and 2,2-dimethyl-6-carboxyethenyl-2H-1-benzopyran (DCBEN). When the same approach was employed for each group, due to the small number of observations, the statistical test gave unreliable results. However, an overall analysis revealed for group A an association of S. aureus with caffeic acid (CAF) and dicaffeoylquinic acid 3 (CAFQ3), of S. pneumoniae with CAFQ3 and monocaffeoylquinic acid 2 (CAFQ2) and of T. cruzi also with CAFQ3. For group B, a higher activity against S. pneumoniae was associated DCBEN and for T. cruzi with CAF. For group C no association was observed between the anitmicrobial effect and any component of the extracts. The present study reinforces the relevance of PCUM and derivatives, especially prenylated ones and also of caffeolyquinic acids, on the biological activity of Brazilian propolis

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost

    Human Pathogenic Paecilomyces from Food

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2019-02-07T12:13:03Z No. of bitstreams: 1 daniellyC_moreira_etal_IOC_2018.pdf: 1369486 bytes, checksum: d9172e10346fc1769152084d469aee26 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2019-02-07T12:21:52Z (GMT) No. of bitstreams: 1 daniellyC_moreira_etal_IOC_2018.pdf: 1369486 bytes, checksum: d9172e10346fc1769152084d469aee26 (MD5)Made available in DSpace on 2019-02-07T12:21:52Z (GMT). No. of bitstreams: 1 daniellyC_moreira_etal_IOC_2018.pdf: 1369486 bytes, checksum: d9172e10346fc1769152084d469aee26 (MD5) Previous issue date: 2018Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Nacional de Doenças Infecciosas Evandro Chagas. Laboratório de Micologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Taxonomia, Bioquímica e Bioprospecção de Fungos. Rio de Janeiro, RJ, Brasil.Paecilomyces spp. and Byssochlamys spp. are heat-resistant fungi important to industry because they can cause food and beverage spoilage, incurring economic loss. The consequences of food or beverage fungal colonization is the loss of nutritional value, structure and taste, and the possibility of producing toxic secondary metabolites that may result in medical problems. Furthermore, these fungi can infect animals and humans and it is unknown if contaminated foods may be fomites. P. variotii is the principal agent of food spoilage or contamination and it is most frequently associated with human hyalohyphomycosis with clinical manifestations including peritonitis, cutaneous and disseminated infections, among others. Byssochlamys spp. had not been identified as a cause of systemic infection until the case of a dog with a fungal infection, after immunosuppressive therapy. P. variotii has clinical importance because it causes severe infection in immunosuppressed patients and also because the number of immunocompetent infected patients is increasing. This review draws attention to the ability of these species to grow at high temperatures, to colonize food products, and to cause human disease

    Clinical and Anatomopathological Evaluation of BALB/c Murine Models Infected with Isolates of Seven Pathogenic Sporothrix Species

    No full text
    Background: Sporotrichosis is a subcutaneous mycosis with worldwide distribution and caused by seven pathogenic species of Sporothrix genus: S. schenckii sensu stricto, S. brasiliensis, S. globosa and S. luriei (clinical clade), and the species S. mexicana, S. pallida and S. chilensis (environmental clade). Isolates of the same species of Sporothrix may have different pathogenicities; however, few isolates of this fungus have been studied. Thus, the aim of this work was to analyze the clinical and anatomopathological changes in immunocompetent and immunosuppressed BALB/c mice infected with clinical and environmental isolates of seven different species of Sporothrix, from both clades. One human clinical isolate of S. schenckii sensu stricto, S. brasiliensis, S. globosa, S. luriei, S. mexicana and S. chilensis species and one environmental isolate of S. pallida were inoculated subcutaneously in immunocompetent mice and the same isolates of S. brasiliensis and S.schenckii sensu stricto were inoculated in immunossupressed mice. Clinical manifestations as external lesions, apathy, and alopecia were observed. At 21, 35, and 49 days after fungal inoculation, four mice from each group were weighed, euthanized and necropsied for evaluation of splenic index, recovery of fungal cells, macroscopic and histopathological analysis of livers, lungs, kidneys, and hearts. The survival assessment was observed for 50 days following inoculation. Our results demonstrated that, clinical S. schenckii isolate, followed by clinical S. mexicana, and environmental S. pallida isolates, the last two, species grouped in the environmental clade, were capable of inducing greater anatomopathological changes in mice, which was reflected in the severity of the clinical signs of these animals. Thus, we reinforce the hypothesis that the pathogenicity of Sporothrix is not only related to the species of this fungus, but also shows variation between different isolates of the same species

    Viabilidade e autenticação molecular de cepas de Coccidioides immitis da Coleção de Culturas do Instituto Oswaldo Cruz, Rio de Janeiro, Brasil

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2020-01-01T17:03:11Z No. of bitstreams: 1 CintiaMBorb_RenataLima_etal_IOC_2006.pdf: 64670 bytes, checksum: c4e224253c7c9e58fc68ed34581344af (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2020-01-01T17:17:53Z (GMT) No. of bitstreams: 1 CintiaMBorb_RenataLima_etal_IOC_2006.pdf: 64670 bytes, checksum: c4e224253c7c9e58fc68ed34581344af (MD5)Made available in DSpace on 2020-01-01T17:17:53Z (GMT). No. of bitstreams: 1 CintiaMBorb_RenataLima_etal_IOC_2006.pdf: 64670 bytes, checksum: c4e224253c7c9e58fc68ed34581344af (MD5) Previous issue date: 2013Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Servico de Micologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Micologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Servico de Micologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Pesquisa Clínica Evandro Chagas. Servico de Micologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Departamento de Micologia. Rio de Janeiro, RJ, Brasil.Vinte cepas de Coccidioides immitis foram avaliadas. Cinco das 20 cepas preservadas sob óleo mineral mantiveram-se viáveis, todas as 5 subculturas preservadas em água permaneceram viáveis e nenhuma das 13 subculturas mantidas em solo foi viável. Um produto de PCR de 519 pb do gene csa confirmou a identidade das cepas.Twenty Coccidioides immitis strains were evaluated. Only 5 of the 20 strains kept under mineral oil maintained their viability while all 5 subcultures preserved in water remained viable and none of the 13 subcultures kept in soil were viable. A 519 bp PCR product from the csa gene confirmed the identity of the strains

    Experimental Hyalohyphomycosis by Purpureocillium lilacinum: Outcome of the Infection in C57BL/6 Murine Models

    No full text
    Purpureocillium lilacinum is a filamentous, hyaline fungus considered an emerging pathogen in humans. The aim of our study was to evaluate the outcome of hyalohyphomycosis in C57BL/6 murine models inoculated with two clinical P. lilacinum isolates (S1 and S2). Each isolate was inoculated in mice randomly distributed in immunocompetent (CPT) and immunosuppressed (SPS) groups. Mice were evaluated at day 7, 21, and 45 after inoculation for histopathological analysis, recovery of fungal cells, and immunological studies. Histological analysis showed scarce conidia-like structures in lung tissue from CPT mice and a lot of fungal cells in SPS mice inoculated with S2 compared to mice inoculated with S1. The maximum recovery of fungal cells was seen in CPT mice inoculated with both isolates at day 7, but with mean significantly higher in those inoculated with S2 isolate. Phenotypical characterization of T cells showed TCD8+ lymphocytes predominance over TCD4+ in immunosuppressed mice infected and control groups. We also observed higher percentages of the central and effector memory/effector phenotype in CPT mice infected with S2 strain, especially in TCD8+ in the initial period of infection. Regulatory T cells showed higher percentages in immunosuppressed, predominantly after the acute phase. Our results showed that the P. lilacinum is a fungus capable to cause damages in competent and immunosuppressed experimental hosts. Furthermore, S2 isolate seems to cause more damage to the experimental host and it was possible to identify different cellular subsets involved in the mice immune response
    corecore