74 research outputs found

    Estrutura atômica e eletrônica em niquelatos (TRNiO3) através de espectroscopia de níveis profundos

    Get PDF
    Orientador: Helio Cesar Nogueira TolentinoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb WataghinResumo: Neste trabalho de tese estudamos a estrutura atômica e eletrônica de sistemas de perovskitas de Ni com terras-raras (TRNiO3) utilizando a espectroscopia de absorção de níveis profundos. A fonte de luz síncrotron foi explorada na região de raios X moles para o estudo das bordas LIII e LII do Ni, e na região de raios X duros para o estudo da borda K do Ni e LIII dos terras raras. A propriedade mais notável nesses sistemas é a ocorrência de uma transição metal-isolante ao variarmos a temperatura da amostra. Essa tem-peratura de transição depende do íon terra-rara, e aumenta ao reduzirmos o tamanho do mesmo. Esses sistemas possuem uma estrutura perovskita distorcida, onde os octaedros NiO6 giram para preencher o espaço em torno do íon terra-rara. Quanto menor o íon, maior a distorção. Observamos assim uma estreita correlação entre a distorção da rede e a transição metal-isolante.Para sistemas com TR variando desde Pr ao Gd foi encontrada uma estrutura cristalográfica de simetria ortorômbica, onde o Ni ocupa um sítio simétrico.Baseado nisto, um primeiro modelo proposto sugeria que a transição seria devido ao estreitamento da banda formada pelos orbitais hibridizados Ni-3d e O-2p, quando o ângulo Ni-O-Ni diminui. No entanto, modificações na temperatura de transição metal-isolante pela substituição isotópica do O mostraram que o acoplamento elétron-fônon deveria ser importante. De fato, para sistemas com íons TR menores (de Ho a Lu) foi encontrada uma distorção monoclínica na fase isolante desses sistemas. Em tal estrutura o Ni ocupa sítios distintos com distâncias Ni-O diferentes. Um ordenamento de cargas nesses sítios distintos explica a fase isolante, bem como o ordenamento antiferromagnético observado para alguns dos compostos. Nossos resultados mostram que essas duas distâncias Ni-O coexistem para todos os sistemas, independentemente da estrutura cristalográfica de longo alcance, e em ambas fases eletrônicas. O sítio maior, de fraca hibridização, é o responsável pela localização eletrônica e coexiste com uma matriz condutora de forte hibridização. A transição metal isolante é explicada pelas modificações na proporção entre esses dois sítios. Dentro deste contexto, um forte acoplamento dos elétrons de condução com a rede é esperado, bem como a supressão da fase isolante sob pressãoAbstract: In this work, we studied the atomic and electronic structure of Ni perovskite systems (TRNiO3, TR=rare earth) using core level absorption spectroscopy. The synchrotron light source was exploited in the soft X-ray range to study Ni LIII and LII edges and in the hard X-ray range to study Ni K edge and rare earths LIII edges. The most remarkable property in these systems is a metal to insulator transition with temperature. This transition temperature depends on the rare-earth ion, increasing its value as the rare earth size is re-duced. These systems have a distorted perovskite structure, where the Ni O6octahedra rotate to fill the empty space left around the rare-earth ion. The smaller the ion, the larger the distortion. This indicates a straight correlation between the net distortion and the metal-insulator transition. For systems with TR varying from Pr to Gd it was found a crystallographic structure with orthorhombic symmetry, where Ni occupies a very symmetric site. Based on these results, it was proposed a model suggesting that the bandwidth would decrease due to a smaller hybridization between Ni3d and O2p bands caused by a decrease at the Ni-O-Ni angle. However, modifications in the transition temperature by the O isotope substitution, showed that the electron-phonon coupling plays an important role. Indeed, for systems with smaller TR ions (from Ho to Lu) it was found a monoclinic distortion in the insulating phase. In such structure Ni occupies two different sites with different Ni-O distances. A charge ordering associated to these different sites explains the insulating phase, as well as the antiferromagnetic ordering observed for some systems. Our results show that these two Ni-O distances coexist in all systems, inde-pendent of its long range crystallographic structure, and in both electronic phases. The site with longer Ni-O distance, which is weakly hybridized, is the responsible for the electronic localization and it is immersed in a con-ducting matrix with stronger hybridization. The metal-insulator transition is explained by the modifications in the proportion between these two Ni sites. In this context, a strong electron-phonon coupling is expected, as well as the suppression of the insulating phase under pressureDoutoradoFísicaDoutor em Ciência

    An electron hole doping and soft x-ray spectroscopy study on La1-xSrxFe0.75Ni0.25O3-{\delta}

    Full text link
    The conductivity of the electron hole and polaron conductor La1-xSrxFe0.75Ni0.25O3-{\delta}, a potential cathode material for intermediate temperature solid oxide fuel cells, was studied for 0 <x < 1 and for temperatures 300 K <T < 1250 K. In LaSrFe-oxide, an ABO3 type perovskite, A-site substitu-tion of the trivalent La3+ by the divalent Sr2+ causes oxidation of Fe3+ towards Fe4+, which forms conducting electron holes. Here we have in addition a B-site substitution by Ni. The compound for x = 0.5 is identified as the one with the highest conductivity ({\sigma} ~ 678 S/cm) and lowest activation energy for polaron conductivity (Ep = 39 meV). The evolution of the electronic structure was monitored by soft x-ray Fe and oxygen K-edge spectroscopy. Homogeneous trend for the oxida-tion state of the Fe was observed. The variation of the ambient temperature conductivity and activation energy with relative Sr content (x) shows a correlation with the ratio of (eg/eg+t2g) in Fe L3 edge up to x=0.5. The hole doping process is reflected by an almost linear trend by the variation of the pre-peaks of the oxygen K-edge soft x-ray absorption spectra

    Evidence for Coexistence of Bulk Superconductivity and Itinerant Antiferromagnetism in the Heavy Fermion System CeCo(In1−x_{1-x}Cdx_x)5_5

    Full text link
    In the generic phase diagram of heavy fermion systems, tuning an external parameter such as hydrostatic or chemical pressure modifies the superconducting transition temperature. The superconducting phase forms a dome in the temperature-tuning parameter phase diagram, which is associated with a maximum of the superconducting pairing interaction. Proximity to antiferromagnetism suggests a relation between the disappearance of antiferromagnetic order and superconductivity. We combine muon spin rotation, neutron scattering, and x-ray absorption spectroscopy techniques to gain access to the magnetic and electronic structure of CeCo(In1−x_{1-x}Cdx_x)5_5 at different time scales. Different magnetic structures are obtained that indicate a magnetic order of itinerant character, coexisting with bulk superconductivity. The suppression of the antiferromagnetic order appears to be driven by a modification of the bandwidth/carrier concentration, implying that the electronic structure and consequently the interplay of superconductivity and magnetism is strongly affected by hydrostatic and chemical pressure.Comment: Article + Supplementary information 33 pages, 13 figure

    The impact of the near-surface region on the interpretation of x-ray absorption spectroscopy

    Full text link
    Transition metal oxides (TMOs) exhibit a broad spectrum of electronic, magnetic, and optical properties, making them intriguing materials for various technological applications. Soft x-ray absorption spectroscopy (XAS) is widely used to study TMOs, shedding light on their chemical state, electronic structure, orbital polarization, element-specific magnetism, and more. Different XAS acquisition modes feature different information depth regimes in the sample. Here, we employ two XAS acquisition modes, having surface-sensitive versus bulk probing depths, on the prototypical TMO SrVO3. We illustrate and elucidate a strong apparent discrepancy between the different modes, emphasizing the impact of the near-surface region on the interpretation of XAS data. These findings highlight the importance of the acquisition mode selection in XAS analysis. Moreover, the results highlight the role of the near-surface region not only in the characterization of TMOs, but also in the design of future nanoscale oxide electronics

    Unusual ferrimagnetism in CaFe2O4

    Get PDF
    Incomplete cancellation of collinear antiparallel spins gives rise to ferrimagnetism. Even if the oppositely polarized spins are owing to the equal number of a single magnetic element having the same valence state, in principle, a ferrimagnetic state can still arise from the crystallographic inequivalence of the host ions. However, experimental identification of such a state as ferrimagnetic is not straightforward because of the tiny magnitude expected for M and the requirement for a sophisticated technique to differentiate similar magnetic sites. We report a synchrotron-based resonant x-ray investigation at the Fe L2,3 edges on an epitaxial film of CaFe2O4, which exhibits two magnetic phases with similar energies. We find that while one phase of CaFe2O4 is antiferromagnetic, the other one is ferrimagnetic with an antiparallel arrangement of an equal number of spins between two distinct crystallographic sites with very similar local coordination environments. Our results further indicate two distinct origins of an overall minute M; one is intrinsic, from distinct Fe3+ sites, and the other one is extrinsic, arising from defective Fe2+ likely forming weakly-coupled ferrimagnetic clusters. These two origins are uncorrelated and have very different coercive fields. Hence, this work provides a direct experimental demonstration of ferrimagnetism solely due to crystallographic inequivalence of the Fe3+ as the origin of the weak M of CaFe2O4.Comment: 14 pages, 8 figure

    Reversed ageing of Fe3_3O4_4 nanoparticles by hydrogen plasma

    Get PDF
    Magnetite (Fe3O4) nanoparticles suffer from severe ageing effects when exposed to air even when they are dispersed in a solvent limiting their applications. In this work, we show that this ageing can be fully reversed by a hydrogen plasma treatment. By x-ray absorption spectroscopy and its associated magnetic circular dichroism, the electronic structure and magnetic properties were studied before and after the plasma treatment and compared to results of freshly prepared magnetite nanoparticles. While aged magnetite nanoparticles exhibit a more γ-Fe2O3 like behaviour, the hydrogen plasma yields pure Fe3O4 nanoparticles. Monitoring the temperature dependence of the intra-atomic spin dipole contribution to the dichroic spectra gives evidence that the structural, electronic and magnetic properties of plasma treated magnetite nanoparticles can outperform the ones of the freshly prepared batch

    Entanglement of charge transfer, hole doping, exchange interaction and octahedron tilting angle and their influence on the conductivity of La1-xSrxFe0.75Ni0.25O3-{\delta}: A combination of x-ray spectroscopy and diffraction

    Full text link
    Substitution of La by Sr in the 25% Ni doped charge transfer insulator LaFeO3 creates structural changes that inflect the electrical conductivity caused by small polaron hopping via exchange interactions and charge transfer. The substitution forms electron holes and a structural crossover from orthorhombic to rhombohedral symmetry, and then to cubic symmetry. The structural crossover is accompanied by a crossover from Fe3+-O2--Fe3+ superexchange interaction to Fe3+-O2--Fe4+ double exchange interaction, as evidenced by a considerable increase of conductivity. These interactions and charge transfer mechanism depend on superexchange angle, which approaches 180{\deg} upon increasing Sr concentration, leading an increased overlap between the O (2p) and Fe/Ni (3d) orbitals

    XMCD study of the magnetic exchange coupling in a fluoride-bridged Dy-Cr molecular cluster

    Get PDF
    We have studied the fluoride-bridged Dy-Cr molecular nanomagnet [Dy(hfac)(4)-CrF2(py)(4)]center dot 1/2CHCl(3) by x-ray magnetic circular dichroism (XMCD). The obtained element-specific magnetization curves allow for a quantification of the sign and strength of the magnetic exchange coupling between the Dy and the Cr ions. In an effective spin-1/2 formalism only taking into account the ground Kramers doublet of the Dy-III ion, we find a coupling strength of j (eff,z) = -2.3(1) cm(-1). Further, we find that the ground Kramers doublet is nearly perfectly axial with g (eff,z) ,D-y = 19.6(6) and g (eff,xy) ,D-y = 0(2). The coupling value corresponds to a "true", non-effective isotropic coupling of j = -0.16 cm(-1) when taking into account a full J = 15/2 angular momentum. This coupling strength is comparable to that of j = -0.18 cm(-1) previously found in the related fluoride-bridged compound Dy-Cr-Dy
    • …
    corecore