60 research outputs found
Circulating 25-Hydroxyvitamin D Levels in Fully Breastfed Infants on Oral Vitamin D Supplementation
Objective. To examine the effectiveness of oral vitamin D3 (400 IU) supplementation on the nutritional vitamin D status of breastfeeding infants.
Design. As part of a larger ongoing vitamin D RCT trial of lactating women, infants of mothers assigned to control
received 1 drop of 400 IU vitamin D3/day starting at one month of age. Infant 25(OH)D levels (mean ± S.D.) were measured by RIA at visits 1, 4, and 7.
Results. The infant mean ± S.D. 25(OH)D at baseline was 16.0 ±9.3 ng/mL (range 1.0–40.8; n = 33); 24 (72.7%) had baseline levels <20 ng/mL (consistent with deficiency). The mean levels increased to 43.6 ±14.1 (range 18.2–69.7) at 4 months and remained relatively unchanged at month 7: 42.5 ±12.1 ng/mL (range 18.9–67.2). The change in values between 1 and 4 months and 1 and 7 months was statistically significant (P ≤ .0001), and despite a decrease in dose per kilogram, values were not significantly different between months 4 and 7 (P = .66).
Conclusions. Oral vitamin D3 supplementation as an oil emulsion was associated with significant and sustained increases in 25(OH)D from baseline in fully breastfeeding infants through 7 months
Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly
Interactions between U2AF homology motifs (UHMs) and U2AF ligand motifs (ULMs) play a crucial role in early spliceosome assembly in eukaryotic gene regulation. UHM-ULM interactions mediate heterodimerization of the constitutive splicing factors U2AF65 and U2AF35 and between other splicing factors that regulate spliceosome assembly at the 3′ splice site, where UHM domains of alternative splicing factors, such as SPF45 and PUF60, contribute to alternative splicing regulation. Here, we performed high-throughput screening using fluorescence polarization assays with hit validation by NMR and identified phenothiazines as general inhibitors of UHM-ULM interactions. NMR studies show that these compounds occupy the tryptophan binding pocket of UHM domains. Co-crystal structures of the inhibitors with the PUF60 UHM domain and medicinal chemistry provide structure-activity-relationships and reveal functional groups important for binding. These inhibitors inhibit early spliceosome assembly on pre-mRNA substrates in vitro. Our data show that spliceosome assembly can be inhibited by targeting UHM-ULM interactions by small molecules, thus extending the toolkit of splicing modulators for structural and biochemical studies of the spliceosome and splicing regulation
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
The Somatic Genomic Landscape of Glioblastoma
We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer
Functional spliceosomal A complexes can be assembled in vitro in the absence of a penta-snRNP
Two different models currently exist for the assembly pathway of the spliceosome, namely, the traditional model, in which spliceosomal snRNPs associate in a stepwise, ordered manner with the pre-mRNA, and the holospliceosome model, in which all spliceosomal snRNPs preassemble into a penta-snRNP complex. Here we have tested whether the spliceosomal A complex, which contains solely U1 and U2 snRNPs bound to pre-mRNA, is a functional, bona fide assembly intermediate. Significantly, A complexes affinity-purified from nuclear extract depleted of U4/U6 snRNPs (and thus unable to form a penta-snRNP) supported pre-mRNA splicing in nuclear extract depleted of U2 snRNPs, whereas naked pre-mRNA did not. Mixing experiments with purified A complexes and naked pre-mRNA additionally confirmed that under these conditions, A complexes do not form de novo. Thus, our studies demonstrate that holospliceosome formation is not a prerequisite for generating catalytically active spliceosomes and that, at least in vitro, the U1 and U2 snRNPs can functionally associate with the pre-mRNA, prior to and independent of the tri-snRNP. The ability to isolate functional spliceosomal A complexes paves the way to study in detail subsequent spliceosome assembly steps using purified components
Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment
The deposition of proteins onto newly spliced mRNAs has far reaching consequences for their subsequent metabolism. We affinity-purified spliced human mRNPs under physiological conditions from HeLa nuclear extract and present the first comprehensive inventory of their protein composition as determined by mass spectrometry. Several proteins previously not known to be mRNP-associated were detected, including the DEAD-box helicases DDX3, DDX5, and DDX9, and the ELG, hNHN1, BCLAF1, and TRAP150 proteins. The association of some of the newly identified mRNP proteins was shown to be splicing-dependent, but not to require EJC formation. Initial recruitment of EJC proteins to the spliceosome did not require an EJC binding platform at the −20/24 region of the 5′ exon. Finally, while recruitment of EJC proteins and stable EJC formation were not dependent on the cap binding complex, several of the newly identified mRNP proteins required the latter for their association with mRNPs. These results provide novel insights into the composition of spliced mRNPs and the requirements for the association of mRNP proteins with the newly spliced mRNA
Identification of an evolutionarily divergent U11 small nuclear ribonucleoprotein particle in Drosophila
Previous reports suggested that U11, in contrast to U12 or other small nuclear (sn)RNAs of the U12-type spliceosome, might be either highly divergent or absent in Drosophila melanogaster. Affinity purification of Drosophila U12-containing complexes has led to the identification of the fly U11 snRNA, which contains a potential U12-type 5′ splice-site-interacting sequence, but whose sequence and length differs significantly from vertebrate and plant U11. Analysis of U12-type introns revealed an A-rich region directly downstream of Drosophila, but not human, U12-type 5′ splice sites. This finding, coupled with the presence of a highly divergent U11 snRNA, and the apparent absence of Drosophila homologs of human U11 proteins, suggest that U12-type 5′ splice site recognition might be different in flies. A comparison of U11 snRNAs that we have identified from vertebrates, plants, and insects, suggests that an evolutionarily divergent U11 snRNA may be unique to Drosophila and not characteristic of insects in general
The U11-48K Protein Contacts the 5′ Splice Site of U12-Type Introns and the U11-59K Protein▿ †
Little is currently known about proteins that make contact with the pre-mRNA in the U12-dependent spliceosome and thereby contribute to intron recognition. Using site-specific cross-linking, we detected an interaction between the U11-48K protein and U12-type 5′ splice sites (5′ss). This interaction did not require branch point recognition and was sensitive to 5′ss mutations, suggesting that 48K interacts with the 5′ss during the first steps of prespliceosome assembly in a sequence-dependent manner. RNA interference-induced knockdown of 48K in HeLa cells led to reduced cell growth and the inhibition of U12-type splicing, as well as the activation of cryptic, U2-type splice sites, suggesting that 48K plays a critical role in U12-type intron recognition. 48K knockdown also led to reduced levels of U11/U12 di-snRNP, indicating that 48K contributes to the stability and/or formation of this complex. In addition to making contact with the 5′ss, 48K interacts with the U11-59K protein, a protein at the interface of the U11/U12 di-snRNP. These studies provide important insights into the protein-mediated recognition of the U12-type 5′ss, as well as functionally important interactions within the U11/U12 di-snRNP
- …