130 research outputs found
Osmotic behaviour of human mesenchymal stem cells: implications for cryopreservation
Aimed at providing a contribution to the optimization of cryopreservation processes, the present work focuses on the osmotic behavior of human mesenchymal stem cells (hMSCs). Once isolated from the umbilical cord blood (UCB) of three different donors, hMSCs were characterized in terms of size distribution and their osmotic properties suitably evaluated through the exposure to hypertonic and isotonic aqueous solutions at three different temperatures. More specifically, inactive cell volume and cell permeability to water and di-methyl sulfoxide (DMSO) were measured, being cell size determined using impedance measurements under both equilibrium and dynamic conditions. Experimental findings indicate that positive cell volume excursions are limited by the apparent increase of inactive volume, which occurs during both the shrink-swell process following DMSO addition and the subsequent restoration of isotonic conditions in the presence of hypertonic solutions of impermeant or permeant solutes. Based on this evidence, hMSCs must be regarded as imperfect osmometers, and their osmotic behavior described within a scenario no longer compatible with the simple two-parameter model usually utilized in the literature. In this respect, the activation of mechano-sensitive ion-channels seemingly represents a reasonable hypothesis for rationalizing the observed osmotic behavior of hMSCs from UCB
Nondiffracting vortex-beams in a birefringent chiral crystal
A vector wave analysis of nondiffracting beams propagating along a
birefringent chiral crystal for the case of tensor character both of the
optical activity and linear birefringence is presented, fields of eigen modes
satisfying vector wave equation. We have written characteristic equations and
found propagation constants and amplitude parameters of eigen modes. We have
shown that the field of eigen modes is non-uniformly polarized in the beam
cross-section. We have revealed that even a purely chiral crystal without a
linear birefringent can generate optical vortices in an initially vortex-free
Bessel beam.Comment: 9 pages, 5 figure
Distinctive physiological muscle synergy patterns define the Box and Block Task execution as revealed by electromyographic features
Stroke survivors experience muscular pattern alterations of the upper limb that decrease their ability to perform daily-living activities. The Box and Block test (BBT) is widely used to assess the unilateral manual dexterity. Although BBT provides insights into functional performance, it returns limited information about the mechanisms contributing to the impaired movement. This study aims at exploring the BBT by means of muscle synergies analysis during the execution of BBT in a sample of 12 healthy participants with their dominant and non-dominant upper limb. Results revealed that: (i) the BBT can be described by 1 or 2 synergies; the number of synergies (ii) does not differ between dominant and non-dominant sides and (iii) varies considering each phase of the task; (iv) the transfer phase requires more synergies. Clinical Relevance— This preliminary study characterizes muscular synergies during the BBT task in order to establish normative patterns that could assist in understanding the neuromuscular demands and support future evaluations of stroke deficit
Defecting or not defecting: how to "read" human behavior during cooperative games by EEG measurements
Understanding the neural mechanisms responsible for human social interactions
is difficult, since the brain activities of two or more individuals have to be
examined simultaneously and correlated with the observed social patterns. We
introduce the concept of hyper-brain network, a connectivity pattern
representing at once the information flow among the cortical regions of a
single brain as well as the relations among the areas of two distinct brains.
Graph analysis of hyper-brain networks constructed from the EEG scanning of 26
couples of individuals playing the Iterated Prisoner's Dilemma reveals the
possibility to predict non-cooperative interactions during the decision-making
phase. The hyper-brain networks of two-defector couples have significantly less
inter-brain links and overall higher modularity - i.e. the tendency to form two
separate subgraphs - than couples playing cooperative or tit-for-tat
strategies. The decision to defect can be "read" in advance by evaluating the
changes of connectivity pattern in the hyper-brain network
Theoretical and technological building blocks for an innovation accelerator
The scientific system that we use today was devised centuries ago and is
inadequate for our current ICT-based society: the peer review system encourages
conservatism, journal publications are monolithic and slow, data is often not
available to other scientists, and the independent validation of results is
limited. Building on the Innovation Accelerator paper by Helbing and Balietti
(2011) this paper takes the initial global vision and reviews the theoretical
and technological building blocks that can be used for implementing an
innovation (in first place: science) accelerator platform driven by
re-imagining the science system. The envisioned platform would rest on four
pillars: (i) Redesign the incentive scheme to reduce behavior such as
conservatism, herding and hyping; (ii) Advance scientific publications by
breaking up the monolithic paper unit and introducing other building blocks
such as data, tools, experiment workflows, resources; (iii) Use machine
readable semantics for publications, debate structures, provenance etc. in
order to include the computer as a partner in the scientific process, and (iv)
Build an online platform for collaboration, including a network of trust and
reputation among the different types of stakeholders in the scientific system:
scientists, educators, funding agencies, policy makers, students and industrial
innovators among others. Any such improvements to the scientific system must
support the entire scientific process (unlike current tools that chop up the
scientific process into disconnected pieces), must facilitate and encourage
collaboration and interdisciplinarity (again unlike current tools), must
facilitate the inclusion of intelligent computing in the scientific process,
must facilitate not only the core scientific process, but also accommodate
other stakeholders such science policy makers, industrial innovators, and the
general public
A graph-theoretical approach in brain functional networks. Possible implications in EEG studies
Abstract\ud
\ud
\ud
\ud
Background\ud
\ud
Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them.\ud
\ud
\ud
\ud
Methods\ud
\ud
We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects.\ud
\ud
\ud
\ud
Results\ud
\ud
Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property.\ud
In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz).\ud
By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions.\ud
\ud
\ud
\ud
Conclusions\ud
\ud
The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.This study was performed with support of the European Union, through the COST program NEUROMATH (BM0601). This paper only reflects the authors’ views and funding agency is not liable for any use that may be made of the information contained herein.This study was performed with support of the European Union, through the COST program NEUROMATH (BM0601). This paper only reflects the authors’ views and funding agency is not liable for any use that may be made of the information contained herein.This article has been published as part of Nonlinear Biomedical Physics Volume 4 Supplement 1, 2010: Consciousness and its Measures: Joint Workshop for COST Actions Neuromath and Consciousness. The full contents of the supplement are available online at http://www.nonlinearbiomedphys.com/supplements/4/S1.This article has been published as part of Nonlinear Biomedical Physics Volume 4 Supplement 1, 2010: Consciousness and its Measures: Joint Workshop for COST Actions Neuromath and Consciousness. The full contents of the supplement are available online at http://www.nonlinearbiomedphys.com/supplements/4/S1
The Impact of the Basel III Liquidity Coverage Ratio on Macroeconomic Stability: An Agent-Based Approach
Commercial banks across the world have been implementing the Basel III accord, which is the most important international response to the 2007-2008 financial crisis. Particularly, the liquidity coverage ratio (LCR) introduced by the Basel III accord is the first global standard for banking liquidity management. Does this requirement work? And what macroeconomic effects does it produce? In order to address such crucial issues, the author develops a stock-flow consistent (SFC)/agent-based computational economic (ACE) model. As he knows, there is a real danger that the requirement restricts the availability of bank credit and hence reducing economic activity. However, in comparison to the prior works, the author finds that the externality is presented as a positive self-reinforcing feedback process, which causes the macroeconomic conditions to spiral downwards. This dynamic feedback process that hardly can be revealed by the current macroeconomic models based on equilibrium analyses. The results also shed some light on the fact that credit creation substantially affects economic activity and macroeconomic stability, as the fundamental reason leading to the results. Therefore, the bank as the driver of credit creation is crucial in an economy, and meanwhile bank regulations have great potential impacts on entire economy rather than only in the bank sector itself
- …