269 research outputs found

    Anderson Localization in Euclidean Random Matrices

    Get PDF
    We study spectra and localization properties of Euclidean random matrices. The problem is approximately mapped onto that of a matrix defined on a random graph. We introduce a powerful method to find the density of states and the localization threshold. We solve numerically an exact equation for the probability distribution function of the diagonal element of the the resolvent matrix, with a population dynamics algorithm, and we show how this can be used to find the localization threshold. An application of the method in the context of the Instantaneous Normal Modes of a liquid system is given.Comment: 4 page

    Investigation of Radiation-Induced Toxicity in Head and Neck Cancer Patients through Radiomics and Machine Learning: A Systematic Review

    Get PDF
    Background. Radiation-induced toxicity represents a crucial concern in oncological treatments of patients affected by head and neck neoplasms, due to its impact on survivors' quality of life. Published reports suggested the potential of radiomics combined with machine learning methods in the prediction and assessment of radiation-induced toxicities, supporting a tailored radiation treatment management. In this paper, we present an update of the current knowledge concerning these modern approaches. Materials and Methods. A systematic review according to PICO-PRISMA methodology was conducted in MEDLINE/PubMed and EMBASE databases until June 2019. Studies assessing the use of radiomics combined with machine learning in predicting radiation-induced toxicity in head and neck cancer patients were specifically included. Four authors (two independently and two in concordance) assessed the methodological quality of the included studies using the Radiomic Quality Score (RQS). The overall score for each analyzed study was obtained by the sum of the single RQS items; the average and standard deviation values of the authors' RQS were calculated and reported. Results. Eight included papers, presenting data on parotid glands, cochlea, masticatory muscles, and white brain matter, were specifically analyzed in this review. Only one study had an average RQS was ≤ 30% (50%), while 3 studies obtained a RQS almost ≤ 25%. Potential variability in the interpretations of specific RQS items could have influenced the inter-rater agreement in specific cases. Conclusions. Published radiomic studies provide encouraging but still limited and preliminary data that require further validation to improve the decision-making processes in preventing and managing radiation-induced toxicities

    On the origin of the Boson peak in globular proteins

    Full text link
    We study the Boson Peak phenomenology experimentally observed in globular proteins by means of elastic network models. These models are suitable for an analytic treatment in the framework of Euclidean Random Matrix theory, whose predictions can be numerically tested on real proteins structures. We find that the emergence of the Boson Peak is strictly related to an intrinsic mechanical instability of the protein, in close similarity to what is thought to happen in glasses. The biological implications of this conclusion are also discussed by focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems, Molveno (2006

    Functional Properties of Meat in Athletes’ Performance and Recovery

    Get PDF
    Physical activity (PA) and sport play an essential role in promoting body development and maintaining optimal health status both in the short and long term. Despite the benefits, a long-lasting heavy training can promote several detrimental physiological changes, including transitory immune system malfunction, increased inflammation, and oxidative stress, which manifest as exercise-induced muscle damages (EIMDs). Meat and derived products represent a very good source of bioactive molecules such as proteins, lipids, amino acids, vitamins, and minerals. Bioactive molecules represent dietary compounds that can interact with one or more components of live tissue, resulting in a wide range of possible health consequences such as immune-modulating, antihypertensive, antimicrobial, and antioxidative activities. The health benefits of meat have been well established and have been extensively reviewed elsewhere, although a growing number of studies found a significant positive effect of meat molecules on exercise performance and recovery of muscle function. Based on the limited research, meat could be an effective post-exercise food that results in favorable muscle protein synthesis and metabolic performance

    Guided evolution of in silico microbial populations in complex environments accelerates evolutionary rates through a step-wise adaptation

    Get PDF
    Abstract Background During their lifetime, microbes are exposed to environmental variations, each with its distinct spatio-temporal dynamics. Microbial communities display a remarkable degree of phenotypic plasticity, and highly-fit individuals emerge quite rapidly during microbial adaptation to novel environments. However, there exists a high variability when it comes to adaptation potential, and while adaptation occurs rapidly in certain environmental transitions, in others organisms struggle to adapt. Here, we investigate the hypothesis that the rate of evolution can both increase or decrease, depending on the similarity and complexity of the intermediate and final environments. Elucidating such dependencies paves the way towards controlling the rate and direction of evolution, which is of interest to industrial and medical applications. Results Our results show that the rate of evolution can be accelerated by evolving cell populations in sequential combinations of environments that are increasingly more complex. To quantify environmental complexity, we evaluate various information-theoretic metrics, and we provide evidence that multivariate mutual information between environmental signals in a given environment correlates well with the rate of evolution in that environment, as measured in our simulations. We find that strong positive and negative correlations between the intermediate and final environments lead to the increase of evolutionary rates, when the environmental complexity increases. Horizontal Gene Transfer is shown to further augment this acceleration, under certain conditions. Interestingly, our simulations show that weak environmental correlations lead to deceleration of evolution, regardless of environmental complexity. Further analysis of network evolution provides a mechanistic explanation of this phenomenon, as exposing cells to intermediate environments can trap the population to local neighborhoods of sub-optimal fitness

    Quantum Discord and entropic measures of quantum correlations: Optimization and behavior in finite XYXY spin chains

    Get PDF
    We discuss a generalization of the conditional entropy and one-way information deficit in quantum systems, based on general entropic forms. The formalism allows to consider simple entropic forms for which a closed evaluation of the associated optimization problem in qudit-qubit systems is shown to become feasible, allowing to approximate that of the quantum discord. As application, we examine quantum correlations of spin pairs in the exact ground state of finite XYXY spin chains in a magnetic field through the quantum discord and information deficit. While these quantities show a similar behavior, their optimizing measurements exhibit significant differences, which can be understood and predicted through the previous approximations. The remarkable behavior of these quantities in the vicinity of transverse and non-transverse factorizing fields is also discussed.Comment: 10 pages, 3 figure

    Innovative tools for aircraft preliminary design – development, applications and education

    Get PDF
    The Design of Aircraft and Flight Technologies Research Group (DAF) at University of Naples is involved in research activities addressing the development and application of new and innovative tools and frameworks for aircraft preliminary design. To build such new tools for aircraft design we believe that the following activities should be carried out: (a) derive new semi-empirical formulations (even through the construction of surrogate methods) which can be more accurate in the prediction of aircraft characteristics (especially for non-conventional configurations); (b) integrate medium to high fidelity tools into the analyses; (c) design with a multidisciplinary approach (i.e. including systems and direct operating costs); (d) include innovative propulsive systems; (e) deal with innovative configurations; (f) include new and efficient optimization algorithms; (g) use advanced software engineering to enhance tool capabilities, speed and usability (for example user-friendly graphic interface or inter-operability with other software). Recent research activities of the DAF group have been focused on the development and application of a new framework. Examples and applications in relevant European research projects can be presented. The development of these tools play also a relevant role in educational activities at the University of Naples as far aircraft design is concerned

    A Fuzzy Criticality Assessment System of Process Equipment for Optimized Maintenance Management.

    Get PDF
    yesIn modern chemical plants, it is essential to establish an effective maintenance strategy which will deliver financially driven results at optimised conditions, that is, minimum cost and time, by means of a criticality review of equipment in maintenance. In this article, a fuzzy logic-based criticality assessment system (FCAS) for the management of a local company’s equipment maintenance is introduced. This fuzzy system is shown to improve the conventional crisp criticality assessment system (CCAS). Results from case studies show that not only can the fuzzy logic-based system do what the conventional crisp system does but also it can output more criticality classifications with an improved reliability and a greater number of different ratings that account for fuzziness and individual voice of the decision-makers

    Black sea observing system

    Get PDF
    The ultimate goal of modern operational oceanography are end user oriented products with high scientific quality. Beneficiaries are the governmental services, coast and offshore based enterprises and research institutions that make use of the products generated by operational oceanography. Direct users are coastal managers, shipping, search and rescue, oil spill combat, offshore industry, ports, fishing, tourism, and recreation industry. Indirect beneficiaries, through climate forecasting based on ocean observations, are food, energy, water and medical suppliers. Availability of updated information on the actual state as well as forecast of marine environment is essential for the success and safety of maritime operations in the offshore industry. Various systems for the collection and presentation of marine data for the needs of different users have been developed and put in operation in the Black Sea. The systems are located both along the coast and in the open sea and the information they provide is used by both the maritime industry and the widest range of users. The Black Sea Monitoring and Forecasting Center in the frame of the Copernicus Marine Service is providing regular and systematic information about the physical state of the ocean, marine ecosystem and wave conditions in the Black Sea area, assimilating observations, keeping efficient operations, advanced technology and high quality modeling products. Combining and optimizing in situ, remote sensing, modeling and forecasting into a Black Sea observing system is a task that has to be solved, and that will allow to get a more complete and comprehensive picture of the state of the marine environment as well as to forecast future changes of physical and biogeochemical state of the Black Sea and the Black Sea ecosystem

    Fast Photon Detection for Particle Identification with COMPASS RICH-1

    Get PDF
    Particle identification at high rates is an important challenge for many current and future high-energy physics experiments. The upgrade of the COMPASS RICH-1 detector requires a new technique for Cherenkov photon detection at count rates of several 10610^6 per channel in the central detector region, and a read-out system allowing for trigger rates of up to 100 kHz. To cope with these requirements, the photon detectors in the central region have been replaced with the detection system described in this paper. In the peripheral regions, the existing multi-wire proportional chambers with CsI photocathode are now read out via a new system employing APV pre-amplifiers and flash ADC chips. The new detection system consists of multi-anode photomultiplier tubes (MAPMT) and fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip. The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run. We present the photon detection design, constructive aspects and the first Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30 June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption of Fig.
    corecore