946 research outputs found

    The Relational Blockworld Interpretation of Non-relativistic Quantum Mechanics

    Get PDF
    We introduce a new interpretation of non-relativistic quantum mechanics (QM) called Relational Blockworld (RBW). We motivate the interpretation by outlining two results due to Kaiser, Bohr, Ulfeck, Mottelson, and Anandan, independently. First, the canonical commutation relations for position and momentum can be obtained from boost and translation operators,respectively, in a spacetime where the relativity of simultaneity holds. Second, the QM density operator can be obtained from the spacetime symmetry group of the experimental configuration exclusively. We show how QM, obtained from relativistic quantum field theory per RBW, explains the twin-slit experiment and conclude by resolving the standard conceptual problems of QM, i.e., the measurement problem, entanglement and non-locality

    Aerial Searches of Business Premises: A Bird\u27s Eye View of the Fourth Amendment

    Get PDF

    The effect of supervisory feedback on a female collegiate lacrosse coach\u27s behavior

    Get PDF
    This study investigated the effectiveness of supervisory feedback as a means of changing a coach\u27s behaviors

    Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase.

    Get PDF
    Intracellular pathways leading from membrane receptor engagement to apoptotic cell death are still poorly characterized. We investigated the intracellular signaling generated after cross-linking of CD95 (Fas/Apo-1 antigen), a broadly expressed cell surface receptor whose engagement results in triggering of cellular apoptotic programs. DX2, a new functional anti-CD95 monoclonal antibody was produced by immunizing mice with human CD95-transfected L cells. Crosslinking of CD95 with DX2 resulted in the activation of a sphingomyelinase (SMase) in promyelocytic U937 cells, as well as in other human tumor cell lines and in CD95-transfected murine cells, as demonstrated by induction of in vivo sphingomyelin (SM) hydrolysis and generation of ceramide. Direct in vitro measurement of enzymatic activity within CD95-stimulated U937 cell extracts, using labeled SM vesicles as substrates, showed strong SMase activity, which required pH 5.0 for optimal substrate hydrolysis. Finally, all CD95-sensitive cell lines tested could be induced to undergo apoptosis after exposure to cell-permeant C2-ceramide. These data indicate that CD95 cross-linking induces SM breakdown and ceramide production through an acidic SMase, thus providing the first information regarding early signal generation from CD95, and may be relevant in defining the biochemical nature of intracellular messengers leading to apoptotic cell death

    Reconciling Spacetime and the Quantum: Relational Blockworld and the Quantum Liar Paradox

    Get PDF
    The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW's acausal and adynamical resolution of the so-called "quantum liar paradox," an experimental set-up alleged to be problematic for a spacetime conception of reality, and conclude by speculating on RBW's implications for quantum gravity.Comment: As accepted for publication in Foundations of Physic

    The Relational Blockworld Interpretation of Non-relativistic Quantum Mechanics

    Get PDF
    We introduce a new interpretation of non-relativistic quantum mechanics (QM) called Relational Blockworld (RBW). We motivate the interpretation by outlining two results due to Kaiser, Bohr, Ulfeck, Mottelson, and Anandan, independently. First, the canonical commutation relations for position and momentum can be obtained from boost and translation operators,respectively, in a spacetime where the relativity of simultaneity holds. Second, the QM density operator can be obtained from the spacetime symmetry group of the experimental configuration exclusively. We show how QM, obtained from relativistic quantum field theory per RBW, explains the twin-slit experiment and conclude by resolving the standard conceptual problems of QM, i.e., the measurement problem, entanglement and non-locality
    • …
    corecore