2,082 research outputs found

    Pressure dependence of phase transitions in the quasi one-dimensional metal-insulator transition system beta-Na1/3V2O5

    Full text link
    The pressure dependence of phase transitions in the quasi one-dimensional vanadium oxide β\beta-Na1/3_{1/3}V2_2O5_5 has been studied by magnetic susceptibility and electrical resistivity measurements. The pressure dependence of the various transition temperatures is quite differently. The transition at T=240 K, previously reported and attributed to ordering on Na sites, and a second transition at T222T \approx 222 K, reported here for the first time and attributed to a further increase of order on Na sites, are almost independent of pressure. On the other hand, the metal-insulator (MI) transition at TMI=130T_{MI}=130 K shifts to lower temperatures, while the magnetic transition at TN=24T_N=24 K shifts to higher temperatures with increasing pressure. We discuss the different pressure dependencies of TMIT_{MI} and TNT_N in terms of increasing interchain coupling and the MI transition to be of Peierls type.Comment: 5 pages, 5 figure

    The Exoplanet Population Observation Simulator. I - The Inner Edges of Planetary Systems

    Full text link
    The Kepler survey provides a statistical census of planetary systems out to the habitable zone. Because most planets are non-transiting, orbital architectures are best estimated using simulated observations of ensemble populations. Here, we introduce EPOS, the Exoplanet Population Observation Simulator, to estimate the prevalence and orbital architectures of multi-planet systems based on the latest Kepler data release, DR25. We estimate that at least 42% of sun-like stars have nearly coplanar planetary systems with 7 or more exoplanets. The fraction of stars with at least one planet within 1 au could be as high as 100% depending on assumptions about the distribution of single transiting planets. We estimate an occurrence rate of planets in the habitable zone around sun-like stars of eta_earth=36+-14%. The innermost planets in multi-planet systems are clustered around an orbital period of 10 days (0.1 au), reminiscent of the protoplanetary disk inner edge or could be explained by a planet trap at that location. Only a small fraction of planetary systems have the innermost planet at long orbital periods, with fewer than ~8% and ~3% having no planet interior to the orbit of Mercury and Venus, respectively. These results reinforce the view that the solar system is not a typical planetary system, but an outlier among the distribution of known exoplanetary systems. We predict that at least half of the habitable zone exoplanets are accompanied by (non-transiting) planets at shorter orbital periods, hence knowledge of a close-in exoplanet could be used as a way to optimize the search for Earth-size planets in the Habitable Zone with future direct imaging missions.Comment: Accepted in AAS journals, code available on githu

    Earths in Other Solar Systems N-body simulations: the Role of Orbital Damping in Reproducing the Kepler Planetary Systems

    Full text link
    The population of exoplanetary systems detected by Kepler provides opportunities to refine our understanding of planet formation. Unraveling the conditions needed to produce the observed exoplanets will sallow us to make informed predictions as to where habitable worlds exist within the galaxy. In this paper, we examine using N-body simulations how the properties of planetary systems are determined during the final stages of assembly. While accretion is a chaotic process, trends in the ensemble properties of planetary systems provide a memory of the initial distribution of solid mass around a star prior to accretion. We also use EPOS, the Exoplanet Population Observation Simulator, to account for detection biases and show that different accretion scenarios can be distinguished from observations of the Kepler systems. We show that the period of the innermost planet, the ratio of orbital periods of adjacent planets, and masses of the planets are determined by the total mass and radial distribution of embryos and planetesimals at the beginning of accretion. In general, some amount of orbital damping, either via planetesimals or gas, during accretion is needed to match the whole population of exoplanets. Surprisingly, all simulated planetary systems have planets that are similar in size, showing that the "peas in a pod" pattern can be consistent with both a giant impact scenario and a planet migration scenario. The inclusion of material at distances larger than what Kepler observes has a profound impact on the observed planetary architectures, and thus on the formation and delivery of volatiles to possible habitable worlds.Comment: Resubmitted to ApJ. Planet formation models available online at http://eos-nexus.org/genesis-database

    The Exoplanet Population Observation Simulator. II -- Population Synthesis in the Era of Kepler

    Get PDF
    The collection of planetary system properties derived from large surveys such as Kepler provides critical constraints on planet formation and evolution. These constraints can only be applied to planet formation models, however, if the observational biases and selection effects are properly accounted for. Here we show how epos, the Exoplanet Population Observation Simulator, can be used to constrain planet formation models by comparing the Bern planet population synthesis models to the Kepler exoplanetary systems. We compile a series of diagnostics, based on occurrence rates of different classes of planets and the architectures of multi-planet systems, that can be used as benchmarks for future and current modeling efforts. Overall, we find that a model with 100 seed planetary cores per protoplanetary disk provides a reasonable match to most diagnostics. Based on these diagnostics we identify physical properties and processes that would result in the Bern model more closely matching the known planetary systems. These are: moving the planet trap at the inner disk edge outward; increasing the formation efficiency of mini-Neptunes; and reducing the fraction of stars that form observable planets. We conclude with an outlook on the composition of planets in the habitable zone, and highlight that the majority of simulated planets smaller than 1.7 Earth radii have substantial hydrogen atmospheres. The software used in this paper is available online for public scrutiny at https://github.com/GijsMulders/eposComment: Accepted in Ap

    The spectral energy distribution of galaxies at z > 2.5: Implications from the Herschel/SPIRE color-color diagram

    Full text link
    We use the Herschel SPIRE color-color diagram to study the spectral energy distribution (SED) and the redshift estimation of high-z galaxies. We compiled a sample of 57 galaxies with spectroscopically confirmed redshifts and SPIRE detections in all three bands at z=2.56.4z=2.5-6.4, and compared their average SPIRE colors with SED templates from local and high-z libraries. We find that local SEDs are inconsistent with high-z observations. The local calibrations of the parameters need to be adjusted to describe the average colors of high-z galaxies. For high-z libraries, the templates with an evolution from z=0 to 3 can well describe the average colors of the observations at high redshift. Using these templates, we defined color cuts to divide the SPIRE color-color diagram into different regions with different mean redshifts. We tested this method and two other color cut methods using a large sample of 783 Herschel-selected galaxies, and find that although these methods can separate the sample into populations with different mean redshifts, the dispersion of redshifts in each population is considerably large. Additional information is needed for better sampling.Comment: 17 pages, 14 figures, accepted for publication in A&

    Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation

    Get PDF
    We present an in depth study on the evolution of galaxy properties in compact groups over the past 3 Gyr. We are using the largest multi-wavelength sample to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift range of 0.01<z<0.23. To derive the physical properties of the galaxies we rely on ultraviolet (UV)-to-infrared spectral energy distribution modeling, using CIGALE. Our results suggest that during the 3 Gyr period covered by our sample, the star formation activity of galaxies in our groups has been substantially reduced (3-10 times). Moreover, their star formation histories as well as their UV-optical and mid-infrared colors are significantly different from those of field and cluster galaxies, indicating that compact group galaxies spend more time transitioning through the green valley. The morphological transformation from late-type spirals into early-type galaxies occurs in the mid-infrared transition zone rather than in the UV-optical green valley. We find evidence of shocks in the emission line ratios and gas velocity dispersions of the late-type galaxies located below the star forming main sequence. Our results suggest that in addition to gas stripping, turbulence and shocks might play an important role in suppressing the star formation in compact group galaxies.Comment: (Accepted for publication in MNRAS, date of submission November 18, 2015

    Lava channel formation during the 2001 eruption on Mount Etna: evidence for mechanical erosion

    Full text link
    We report the direct observation of a peculiar lava channel that was formed near the base of a parasitic cone during the 2001 eruption on Mount Etna. Erosive processes by flowing lava are commonly attributed to thermal erosion. However, field evidence strongly suggests that models of thermal erosion cannot explain the formation of this channel. Here, we put forward the idea that the essential erosion mechanism was abrasive wear. By applying a simple model from tribology we demonstrate that the available data agree favorably with our hypothesis. Consequently, we propose that erosional processes resembling the wear phenomena in glacial erosion are possible in a volcanic environment.Comment: accepted for publication in Physical Review Letter

    The slippery slope of dust attenuation curves: Correlation of dust attenuation laws with star-to-dust compactness up to z = 4

    Full text link
    Aims. We investigate dust attenuation of 122 heavily dust-obscured galaxies detected with the Atacama Large Millimeter Array (ALMA) and Herschel in the COSMOS field. We search for correlations between dust attenuation recipes and the variation of physical parameters, mainly the effective radii of galaxies, their star formation rates (SFR), and stellar masses, and aim to understand which of the commonly used laws best describes dust attenuation in dusty star-forming galaxies at high redshift. Methods. We make use of the extensive photometric coverage of the COSMOS data combined with highly-resolved dust continuum maps from ALMA. We use CIGALE to estimate various physical properties of these dusty objects, mainly their SFR, their stellar masses and their attenuation. We infer galaxy effective radii (Re) using GALFIT in the Y band of HSC and ALMA continuum maps. We use these radii to investigate the relative compactness of the dust continuum and the extension of the rest-frame UV/optical Re(y)/Re(ALMA). Results. We find that the physical parameters calculated from our models strongly depend on the assumption of dust attenuation curve. As expected, the most impacted parameter is the stellar mass, which leads to a change in the "starburstiness" of the objects. We find that taking into account the relative compactness of star-to-dust emission prior to SED fitting is crucial, especially when studying dust attenuation of dusty star-forming galaxies. Shallower attenuation curves did not show a clear preference of compactness with attenuation, while the Calzetti attenuation curve preferred comparable spatial extent of unattenuated stellar light and dust emission. The evolution of the Re(UV)/Re(ALMA) ratio with redshift peeks around the cosmic noon in our sample of DSFGs, showing that this compactness is correlated with the cosmic SFR density of these dusty sources.Comment: 18 pages, 13 figures, accepted for publication in A&A. Abstract abridged for arXiv submissio

    Towards understanding the relation between the gas and the attenuation in galaxies at kpc scales

    Get PDF
    [abridged] Aims. The aim of the present paper is to provide new and more detailed relations at the kpc scale between the gas surface density and the face-on optical depth directly calibrated on galaxies, in order to compute the attenuation not only for semi-analytic models but also observationally as new and upcoming radio observatories are able to trace gas ever farther in the Universe. Methods. We have selected a sample of 4 nearby resolved galaxies and a sample of 27 unresolved galaxies from the Herschel Reference Survey and the Very Nearby Galaxies Survey, for which we have a large set of multi-wavelength data from the FUV to the FIR including metallicity gradients for resolved galaxies, along with radio HI and CO observations. For each pixel in resolved galaxies and for each galaxy in the unresolved sample, we compute the face-on optical depth from the attenuation determined with the CIGALE SED fitting code and an assumed geometry. We determine the gas surface density from HI and CO observations with a metallicity-dependent XCO factor. Results. We provide new, simple to use, relations to determine the face-on optical depth from the gas surface density, taking the metallicity into account, which proves to be crucial for a proper estimate. The method used to determine the gas surface density or the face-on optical depth has little impact on the relations except for galaxies that have an inclination over 50d. Finally, we provide detailed instructions on how to compute the attenuation practically from the gas surface density taking into account possible information on the metallicity. Conclusions. Examination of the influence of these new relations on simulated FUV and IR luminosity functions shows a clear impact compared to older oft-used relations, which in turn could affect the conclusions drawn from studies based on large scale cosmological simulations.Comment: 24 pages, 21 figures, accepted for publication in A&
    corecore