96 research outputs found

    OVERLAND FLOW TRANSPORT OF SEDIMENT AND NUTRIENTS FROM LANDS UNDER DIFFERENT MANAGEMENT REGIMES IN THE ATHERTON TABLELAND

    Get PDF
    Abstract A series of field rainfall simulations were carried out to study the impact of different land-use and management techniques on sediment and nutrient movement in the southern Atherton Tableland. Both farm management techniques and landscape factors appear to influence sediment and nutrient loss in runoff. The highest sediment concentration was produced on a cattle track and was substantially higher than sediment concentrations produced at all other experimental plots. In general higher sediment concentrations were associated with beef farms where the soil was most heavily impacted by cattle trampling. Loss of dissolved nitrate was at its highest on dairy sites which had greater nutrient inputs through fertilisation and nitrogen fixation by leguminous plants than either beef or rainforest sites. Nitrate concentration in runoff on the organic dairy farm was similar to the concentration at the dairy farm where mineral fertiliser was used. The position in the landscape was found to influence nitrate concentration, with the highest concentrations being measured in the lower toeslopes. Results indicate that farms should be managed and designed according to landscape features. They also demonstrate the importance of undertaking landscape scale rather than point scale studies

    A Functional Link Between Bir1 and the <i>Saccharomyces cerevisiae</i> Ctf19 Kinetochore Complex Revealed Through Quantitative Fitness Analysis

    Get PDF
    The chromosomal passenger complex (CPC) is a key regulator of eukaryotic cell division, consisting of the protein kinase Aurora B/Ipl1 in association with its activator (INCENP/Sli15) and two additional proteins (Survivin/Bir1 and Borealin/Nbl1). Here, we report a genome-wide genetic interaction screen in Saccharomyces cerevisiae using the bir1-17 mutant, identifying through quantitative fitness analysis deletion mutations that act as enhancers and suppressors. Gene knockouts affecting the Ctf19 kinetochore complex were identified as the strongest enhancers of bir1-17, while mutations affecting the large ribosomal subunit or the mRNA nonsense-mediated decay pathway caused strong phenotypic suppression. Thus, cells lacking a functional Ctf19 complex become highly dependent on Bir1 function and vice versa. The negative genetic interaction profiles of bir1-17 and the cohesin mutant mcd1-1 showed considerable overlap, underlining the strong functional connection between sister chromatid cohesion and chromosome biorientation. Loss of some Ctf19 components, such as Iml3 or Chl4, impacted differentially on bir1-17 compared with mutations affecting other CPC components: despite the synthetic lethality shown by either iml3βˆ† or chl4βˆ† in combination with bir1-17, neither gene knockout showed any genetic interaction with either ipl1-321 or sli15-3. Our data therefore imply a specific functional connection between the Ctf19 complex and Bir1 that is not shared with Ipl1

    Studies of viomycin, an anti-tuberculosis antibiotic: Copper(II) coordination, DNA degradation and the impact on delta ribozyme cleavage activity

    Get PDF
    Viomycin is a basic peptide antibiotic, which is among the most effective agents against multidrug-resistant tuberculosis. In this paper we provide the characteristics of its acid base properties, coordination preferences towards the Cu(II) ions, as well as the reactivity of the resulting complexes against plasmid DNA and HDV ribozyme. Careful coordination studies throughout the wide pH range allow for the characterisation of all the Cu(II)-viomycin complex species. The assignment of proton chemical shifts was achieved by NMR experiments, while the DTF level of theory was applied to support molecular structures of the studied complexes. The experiments with the plasmid DNA reveal that at the physiological levels of hydrogen peroxide the Cu(II)-viomycin complex is more aggressive against DNA than uncomplexed metal ions. Moreover, the degradation of DNA by viomycin can be carried out without the presence of transition metal ions. In the studies of antigenomic delta ribozyme catalytic activity, viomycin and its complex are shown to modulate the ribozyme functioning. The molecular modelling approach allows the indication of two different locations of viomycin binding sites to the ribozyme

    RESULTS AND INTERPRETATION OF SOIL LOSS MEASUREMENTS FROM STEEP SLOPES IN THE PHILIPPINES

    Get PDF
    Abstract Measurements of runoff-event soil loss and one-minute rates of rainfall and runoff are reported for runoff plots installed on the tropical Philippine island of Leyte. Plots were either under traditional crops cultivated using farmer practices, or kept bare. Plots were of length 12 m and at slopes of 50% to 70%. Soil loss for the cultivated crop was 35 t ha -1 y -1 , and 63 t ha -1 y -1 for the bare soil plots. An erodibility parameter Ξ² calculated for bare-plot data exceeded the value 1 for lower stream power events, indicating enhancement of flow-driven erosion by other processes, such as rainfall impact. This conclusion held whether an original erosion model was employed, or a subsequent model development designed to acknowledge the special effects of very high sediment concentrations and shallow flows common at the site

    A Grafting Strategy for the Design of Improved G-Quadruplex Aptamers and High-Activity DNAzymes

    Get PDF
    Nucleic acid aptamers are generally obtained by in vitro selection. Some have G-rich consensus sequences with ability to fold into the four-stranded structures known as G-quadruplexes. A few G-quadruplex aptamers have proven to bind hemin to form a new class of DNAzyme with the peroxidase-like activity, which can be significantly promoted by appending an appropriate base-pairing duplex onto the G-quadruplex structures of aptamers. Knowing the structural role of base pairing, here we introduce a novel grafting strategy for the design of improved G-quadruplex aptamers and high-activity DNAzymes. To demonstrate this strategy, three existing G-quadruplex aptamers are chosen as the first generation. A base-pairing DNA duplex is grafted onto the G-quadruplex motif of the first generation aptamers. Consequently, three new aptamers with the quadruplex/duplex DNA structures are produced as the second generation. The hemin-binding affinities and DNAzyme functions of the second generation aptamers are characterized and compared with the first generation. The results indicate three G-quadruplex aptamers obtained by the grafting strategy have more excellent properties than the corresponding original aptamers. Our findings suggest that, if the structures and functions of existing aptamers are thoroughly known, the grafting strategy can be facilely utilized to improve the aptamer properties and thereby producing better next-generation aptamers. This provides a simple but effective approach to the design of nucleic acid aptamers and DNAzymes

    The in vitro loose dimer structure and rearrangements of the HIV-2 leader RNA

    Get PDF
    RNA dimerization is an essential step in the retroviral life cycle. Dimerization and encapsidation signals, closely linked in HIV-2, are located in the leader RNA region. The SL1 motif and nucleocapsid protein are considered important for both processes. In this study, we show the structure of the HIV-2 leader RNA (+1–560) captured as a loose dimer. Potential structural rearrangements within the leader RNA were studied. In the loose dimer form, the HIV-2 leader RNA strand exists in vitro as a single global fold. Two kissing loop interfaces within the loose dimer were identified: SL1/SL1 and TAR/TAR. Evidence for these findings is provided by RNA probing using SHAPE, chemical reagents, enzymes, non-denaturing PAGE mobility assays, antisense oligonucleotides hybridization and analysis of an RNA mutant. Both TAR and SL1 as isolated domains are bound by recombinant NCp8 protein with high affinity, contrary to the hairpins downstream of SL1. Foot-printing of the SL1/NCp8 complex indicates that the major binding site maps to the SL1 upper stem. Taken together, these data suggest a model in which TAR hairpin III, the segment of SL1 proximal to the loop and the PAL palindromic sequence play specific roles in the initiation of dimerization

    Quantitative Fitness Analysis Shows That NMD Proteins and Many Other Protein Complexes Suppress or Enhance Distinct Telomere Cap Defects

    Get PDF
    To better understand telomere biology in budding yeast, we have performed systematic suppressor/enhancer analyses on yeast strains containing a point mutation in the essential telomere capping gene CDC13 (cdc13-1) or containing a null mutation in the DNA damage response and telomere capping gene YKU70 (yku70Ξ”). We performed Quantitative Fitness Analysis (QFA) on thousands of yeast strains containing mutations affecting telomere-capping proteins in combination with a library of systematic gene deletion mutations. To perform QFA, we typically inoculate 384 separate cultures onto solid agar plates and monitor growth of each culture by photography over time. The data are fitted to a logistic population growth model; and growth parameters, such as maximum growth rate and maximum doubling potential, are deduced. QFA reveals that as many as 5% of systematic gene deletions, affecting numerous functional classes, strongly interact with telomere capping defects. We show that, while Cdc13 and Yku70 perform complementary roles in telomere capping, their genetic interaction profiles differ significantly. At least 19 different classes of functionally or physically related proteins can be identified as interacting with cdc13-1, yku70Ξ”, or both. Each specific genetic interaction informs the roles of individual gene products in telomere biology. One striking example is with genes of the nonsense-mediated RNA decay (NMD) pathway which, when disabled, suppress the conditional cdc13-1 mutation but enhance the null yku70Ξ” mutation. We show that the suppressing/enhancing role of the NMD pathway at uncapped telomeres is mediated through the levels of Stn1, an essential telomere capping protein, which interacts with Cdc13 and recruitment of telomerase to telomeres. We show that increased Stn1 levels affect growth of cells with telomere capping defects due to cdc13-1 and yku70Ξ”. QFA is a sensitive, high-throughput method that will also be useful to understand other aspects of microbial cell biology

    Allele-Specific Virulence Attenuation of the Pseudomonas syringae HopZ1a Type III Effector via the Arabidopsis ZAR1 Resistance Protein

    Get PDF
    Plant resistance (R) proteins provide a robust surveillance system to defend against potential pathogens. Despite their importance in plant innate immunity, relatively few of the ∼170 R proteins in Arabidopsis have well-characterized resistance specificity. In order to identify the R protein responsible for recognition of the Pseudomonas syringae type III secreted effector (T3SE) HopZ1a, we assembled an Arabidopsis R gene T–DNA Insertion Collection (ARTIC) from publicly available Arabidopsis thaliana insertion lines and screened it for plants lacking HopZ1a-induced immunity. This reverse genetic screen revealed that the Arabidopsis R protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1; At3g50950) is required for recognition of HopZ1a in Arabidopsis. ZAR1 belongs to the coiled-coil (CC) class of nucleotide binding site and leucine-rich repeat (NBS–LRR) containing R proteins; however, the ZAR1 CC domain phylogenetically clusters in a clade distinct from other related Arabidopsis R proteins. ZAR1–mediated immunity is independent of several genes required by other R protein signaling pathways, including NDR1 and RAR1, suggesting that ZAR1 possesses distinct signaling requirements. The closely-related T3SE protein, HopZ1b, is still recognized by zar1 Arabidopsis plants indicating that Arabidopsis has evolved at least two independent R proteins to recognize the HopZ T3SE family. Also, in Arabidopsis zar1 plants HopZ1a promotes P. syringae growth indicative of an ancestral virulence function for this T3SE prior to the evolution of recognition by the host resistance protein ZAR1. Our results demonstrate that the Arabidopsis resistance protein ZAR1 confers allele-specific recognition and virulence attenuation of the Pseudomonas syringae T3SE protein HopZ1a

    A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China

    Get PDF
    As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of the Loess Plateau, China, through the use of several methods including the Universal Soil Loss Equation (USLE), hydrological modeling and multivariate analysis. An assessment of the changes over the period of 2000–2008 in four key ecosystem services was undertaken to determine the effects of the Chinese government's ecological rehabilitation initiatives implemented in 1999. These ecosystem services included water regulation, soil conservation, carbon sequestration and grain production. Significant conversions of farmland to woodland and grassland were found to have resulted in enhanced soil conservation and carbon sequestration, but decreased regional water yield under a warming and drying climate trend. The total grain production increased in spite of a significant decline in farmland acreage. These trends have been attributed to the strong socioeconomic incentives embedded in the ecological rehabilitation policy. Although some positive policy results have been achieved over the last decade, large uncertainty remains regarding long-term policy effects on the sustainability of ecological rehabilitation performance and ecosystem service enhancement. To reduce such uncertainty, this study calls for an adaptive management approach to regional ecological rehabilitation policy to be adopted, with a focus on the dynamic interactions between people and their environments in a changing world

    Nucleic acid-based fluorescent probes and their analytical potential

    Get PDF
    It is well known that nucleic acids play an essential role in living organisms because they store and transmit genetic information and use that information to direct the synthesis of proteins. However, less is known about the ability of nucleic acids to bind specific ligands and the application of oligonucleotides as molecular probes or biosensors. Oligonucleotide probes are single-stranded nucleic acid fragments that can be tailored to have high specificity and affinity for different targets including nucleic acids, proteins, small molecules, and ions. One can divide oligonucleotide-based probes into two main categories: hybridization probes that are based on the formation of complementary base-pairs, and aptamer probes that exploit selective recognition of nonnucleic acid analytes and may be compared with immunosensors. Design and construction of hybridization and aptamer probes are similar. Typically, oligonucleotide (DNA, RNA) with predefined base sequence and length is modified by covalent attachment of reporter groups (one or more fluorophores in fluorescence-based probes). The fluorescent labels act as transducers that transform biorecognition (hybridization, ligand binding) into a fluorescence signal. Fluorescent labels have several advantages, for example high sensitivity and multiple transduction approaches (fluorescence quenching or enhancement, fluorescence anisotropy, fluorescence lifetime, fluorescence resonance energy transfer (FRET), and excimer-monomer light switching). These multiple signaling options combined with the design flexibility of the recognition element (DNA, RNA, PNA, LNA) and various labeling strategies contribute to development of numerous selective and sensitive bioassays. This review covers fundamentals of the design and engineering of oligonucleotide probes, describes typical construction approaches, and discusses examples of probes used both in hybridization studies and in aptamer-based assays
    • …
    corecore