52 research outputs found

    Aldose reductase deficiency in mice protects from ragweed pollen extract (RWE)-induced allergic asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Childhood hospitalization related to asthma remains at historically high levels, and its incidence is on the rise world-wide. Previously, we have demonstrated that aldose reductase (AR), a regulatory enzyme of polyol pathway, is a major mediator of allergen-induced asthma pathogenesis in mouse models. Here, using AR null (AR<sup>-/-</sup>) mice we have investigated the effect of AR deficiency on the pathogenesis of ragweed pollen extract (RWE)-induced allergic asthma in mice and also examined the efficacy of enteral administration of highly specific AR inhibitor, fidarestat.</p> <p>Methods</p> <p>The wild type (WT) and AR<sup>-/- </sup>mice were sensitized and challenged with RWE to induce allergic asthma. AR inhibitor, fidarestat was administered orally. Airway hyper-responsiveness was measured in unrestrained animals using whole body plethysmography. Mucin levels and Th2 cytokine in broncho-alveolar lavage (BAL) were determined using mouse anti-Muc5A/C ELISA kit and multiplex cytokine array, respectively. Eosinophils infiltration and goblet cells were assessed by H&E and periodic acid Schiff (PAS)-staining of formalin-fixed, paraffin-embedded lung sections. T regulatory cells were assessed in spleen derived CD4<sup>+</sup>CD25<sup>+ </sup>T cells population.</p> <p>Results</p> <p>Deficiency of AR in mice led to significantly decreased PENH, a marker of airway hyper-responsiveness, metaplasia of airway epithelial cells and mucus hyper-secretion following RWE-challenge. This was accompanied by a dramatic decrease in infiltration of eosinophils into sub-epithelium of lung as well as in BAL and release of Th2 cytokines in response to RWE-challenge of AR<sup>-/- </sup>mice. Further, enteral administration of fidarestat significantly prevented eosinophils infiltration, airway hyper-responsiveness and also markedly increased population of T regulatory (CD4<sup>+</sup>CD25<sup>+</sup>FoxP3<sup>+</sup>) cells as compared to RWE-sensitized and challenged mice not treated with fidarestat.</p> <p>Conclusion</p> <p>Our results using AR<sup>-/- </sup>mice strongly suggest the role of AR in allergic asthma pathogenesis and effectiveness of oral administration of AR inhibitor in RWE-induced asthma in mice supports the use of AR inhibitors in the treatment of allergic asthma.</p

    Induction of Heme Oxygenase-1, Biliverdin Reductase and H-Ferritin in Lung Macrophage in Smokers with Primary Spontaneous Pneumothorax: Role of HIF-1α

    Get PDF
    Few data concern the pathophysiology of primary spontaneous pneumothorax (PSP), which is associated with alveolar hypoxia/reoxygenation. This study tested the hypothesis that PSP is associated with oxidative stress in lung macrophages. We analysed expression of the oxidative stress marker 4-HNE; the antioxidant and anti-inflammatory proteins heme oxygenase-1 (HO-1), biliverdin reductase (BVR) and heavy chain of ferritin (H-ferritin); and the transcription factors controlling their expression Nrf2 and HIF-1alpha, in lung samples from smoker and nonsmoker patients with PSP (PSP-S and PSP-NS), cigarette smoke being a risk factor of recurrence of the disease.mRNA was assessed by RT-PCR and proteins by western blot, immunohistochemistry and confocal laser analysis. 4-HNE, HO-1, BVR and H-ferritin were increased in macrophages from PSP-S as compared to PSP-NS and controls (C). HO-1 increase was associated with increased expression of HIF-1alpha mRNA and protein in alveolar macrophages in PSP-S patients, whereas Nrf2 was not modified. To understand the regulation of HO-1, BVR and H-ferritin, THP-1 macrophages were exposed to conditions mimicking conditions in C, PSP-S and PSP-NS patients: cigarette smoke condensate (CS) or air exposure followed or not by hypoxia/reoxygenation. Silencing RNA experiments confirmed that HIF-1alpha nuclear translocation was responsible for HO-1, BVR and H-ferritin induction mediated by CS and hypoxia/reoxygenation.PSP in smokers is associated with lung macrophage oxidative stress. The response to this condition involves HIF-1alpha-mediated induction of HO-1, BVR and H-ferritin

    Inhibition of Aldose Reductase Prevents Experimental Allergic Airway Inflammation in Mice

    Get PDF
    The bronchial asthma, a clinical complication of persistent inflammation of the airway and subsequent airway hyper-responsiveness, is a leading cause of morbidity and mortality in critically ill patients. Several studies have shown that oxidative stress plays a key role in initiation as well as amplification of inflammation in airways. However, still there are no good anti-oxidant strategies available for therapeutic intervention in asthma pathogenesis. Most recent studies suggest that polyol pathway enzyme, aldose reductase (AR), contributes to the pathogenesis of oxidative stress-induced inflammation by affecting the NF-kappaB-dependent expression of cytokines and chemokines and therefore inhibitors of AR could be anti-inflammatory. Since inhibitors of AR have already gone through phase-III clinical studies for diabetic complications and found to be safe, our hypothesis is that AR inhibitors could be novel therapeutic drugs for the prevention and treatment of asthma. Hence, we investigated the efficacy of AR inhibition in the prevention of allergic responses to a common natural airborne allergen, ragweed pollen that leads to airway inflammation and hyper-responsiveness in a murine model of asthma.Primary Human Small Airway Epithelial Cells (SAEC) were used to investigate the in vitro effects of AR inhibition on ragweed pollen extract (RWE)-induced cytotoxic and inflammatory signals. Our results indicate that inhibition of AR prevents RWE -induced apoptotic cell death as measured by annexin-v staining, increase in the activation of NF-kappaB and expression of inflammatory markers such as inducible nitric oxide synthase (iNOS), cycloxygenase (COX)-2, Prostaglandin (PG) E(2), IL-6 and IL-8. Further, BALB/c mice were sensitized with endotoxin-free RWE in the absence and presence of AR inhibitor and followed by evaluation of perivascular and peribronchial inflammation, mucin production, eosinophils infiltration and airway hyperresponsiveness. Our results indicate that inhibition of AR prevents airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid and airway hyperresponsiveness in mice.These results suggest that airway inflammation due to allergic response to RWE, which subsequently activates oxidative stress-induced expression of inflammatory cytokines via NF-kappaB-dependent mechanism, could be prevented by AR inhibitors. Therefore, inhibition of AR could have clinical implications, especially for the treatment of airway inflammation, a major cause of asthma pathogenesis

    The Phosphatidylcholine Transfer Protein Stard7 is Required for Mitochondrial and Epithelial Cell Homeostasis

    No full text
    Mitochondria synthesize select phospholipids but lack the machinery for synthesis of the most abundant mitochondrial phospholipid, phosphatidylcholine (PC). Although the phospholipid transfer protein Stard7 promotes uptake of PC by mitochondria, the importance of this pathway for mitochondrial and cellular homeostasis represents a significant knowledge gap. Haploinsufficiency for Stard7 is associated with significant exacerbation of allergic airway disease in mice, including an increase in epithelial barrier permeability. To test the hypothesis that Stard7 deficiency leads to altered barrier structure/function downstream of mitochondrial dysfunction, Stard7 expression was knocked down in a bronchiolar epithelial cell line (BEAS-2B) and specifically deleted in lung epithelial cells of mice (Stard7(epi∆/∆)). Stard7 deficiency was associated with altered mitochondrial size and membrane organization both in vitro and in vivo. Altered mitochondrial structure was accompanied by disruption of mitochondrial homeostasis, including decreased aerobic respiration, increased oxidant stress, and mitochondrial DNA damage that, in turn, was linked to altered barrier integrity and function. Both mitochondrial and barrier defects were largely corrected by targeting Stard7 to mitochondria or treating epithelial cells with a mitochondrial-targeted antioxidant. These studies suggest that Stard7-mediated transfer of PC is crucial for mitochondrial homeostasis and that mitochondrial dysfunction contributes to altered barrier permeability in Stard7-deficient mice

    Relationship between air pollution, NFE2L2 gene polymorphisms and childhood asthma in a Hungarian population

    No full text
    Air pollution and subsequent increased oxidative stress have long been recognized as contributing factors for asthma phenotypes. Individual susceptibility to oxidative stress is determined by genetic variations of the antioxidant defence system. In this study, we analysed the association between environmental nitrogen dioxide (NO2) exposure and single nucleotide polymorphisms (SNP) in NFE2L2 and KEAP1 genes and their common impact on asthma risk. We genotyped 12 SNPs in a case–control study of 307 patients diagnosed with asthma and 344 controls. NO2 concentration was collected from the period preceding the development of asthma symptoms. Multiple logistic regression was applied to evaluate the effects of the studied genetic variations on asthma outcomes in interaction with NO2 exposure. Our data showed that genotypes of rs2588882 and rs6721961 in the regulatory regions of the NFE2L2 gene were inversely associated with infection-induced asthma (odds ratio (OR) = 0.290, p = 0.0015, and OR = 0.437, p = 0.007, respectively). Furthermore, case-only analyses revealed significant differences for these SNPs between asthma patients that lived in modestly or highly polluted environment (OR = 0.43 (0.23–0.82), p = 0.01, and OR = 0.51, p = 0.02, respectively, in a dominant model). In conclusion, our results throw some new light upon the impact of NFE2L2 polymorphisms on infection-induced asthma risk and their effect in gene–environment interactions
    corecore