437 research outputs found

    Health and economic burden of sugar-sweetened beverages consumption in Brazil

    Get PDF
    Sugar-sweetened beverages (SSBs) are a major source of added sugar and are associated with noncommunicable diseases (NCDs) such as obesity and diabetes. This study assessed the impact of SSBs consumption on disease burden in Brazil, including deaths, disability-adjusted life years (DALYs), and healthcare costs. A 3-stage methodology was used to assess the direct effects of SSBs on diabetes, cardiovascular diseases, and body mass index (BMI), along with the influence of BMI on disease incidence. These assessments were then used to estimate the economic and health burden using population-attributable factors. Results showed that 2.7% and 11% of adult and children overweight/obesity cases were attributable to SSBs, respectively. SSBs consumption in Brazil led to 1,814,486 cases, 12,942 deaths, 362,088 DALYs, and USD 2,915.91 million in medical costs related to diabetes, cardiovascular diseases, oncological diseases, and other NCDs. Urgent implementation of public policies is crucial to address the consumption of SSBs, recognized as a key risk factor for NCDs

    Health and economic burden of disease of sugar-sweetened beverage consumption in four Latin American and Caribbean countries : a modelling study

    Get PDF
    OBJECTIVE: Overweight and obesity are important contributors to the non-communicable disease burden. The consumption of sugar-sweetened beverages (SSBs) has been associated with an increased risk of type 2 diabetes mellitus (T2DM), cardiovascular disease, cancer and other conditions. The objective of this study was to estimate the burden of disease attributable to the consumption of SSBs and the costs to the healthcare systems in Argentina, Brazil, El Salvador, and Trinidad and Tobago. DESIGN: Following a systematic review of models, a comparative risk assessment framework was developed to estimate the health and economic impact associated with the consumption of SSBs. SETTING: Argentina, Brazil, El Salvador, and Trinidad and Tobago. PARTICIPANTS: Overall population. PRIMARY AND SECONDARY OUTCOME MEASURES: The model estimated the effects of SSB consumption on health through two causal pathways: one mediated by body mass index (BMI) and health conditions associated with BMI and another that reflected the independent effects of SSB consumption on T2DM and cardiovascular diseases. RESULTS: The model results indicated that for all four countries, in 1 year, SSB consumption was associated with 18 000 deaths (3.2% of the total disease-related deaths), seven million disease events (3.3% of the total disease-related events), a half-million DALYs and US$2 billion in direct medical costs. This included 1.5 million cases of overweight and obesity in children/adolescents (12% of the excess weight cases) and 2.8 million cases in adults (2.8%); 2.2 million cases of type 2 diabetes (19%); 200 000 cases of heart disease (3.8%); 124 000 strokes (3.9%); 116 000 cases of musculoskeletal disease (0.2%); 102 000 cases of kidney disease (0.9%); and 45 000 episodes of asthma (0.4%). The Trinidad and Tobago population were the most affected by disease events. CONCLUSIONS: The study results indicate that the consumption of SSBs is associated with a significant burden of disease and death in Latin America and the Caribbean

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    Contribuciones al desarrollo de filtros electrostáticos para el tratamiento de gases generados en la combustión de biomasa

    No full text
    Este proyecto de tesis se enmarca en algunas de las actividades investigadoras llevadas a cabo por el Grupo de Tecnología Energética-GTE de la Universidad de Vigo, centrado en sistemas domésticos de combustión de biomasa. Los problemas de contaminación y salud humana asociados a la emisión de partículas en la combustión de biomasa generan la necesidad de retención de las mismas, no solo a nivel industrial, sino también a nivel doméstico. En este contexto, el coste final del producto es un factor limitante, así como la comodidad para el usuario a la hora de llevar a cabo el mantenimiento del dispositivo. Además, se busca, conjuntamente con las dos restricciones anteriores, minimizar todo lo posible la emisión de partículas. En vista de las limitaciones de algunos dispositivos existentes actualmente en el mercado para adaptarlos a pequeña escala, se analizará la tecnología del filtro electrostático para reducir las emisiones de materia particulada generadas por equipos de biomasa de baja potencia. En el grupo de investigación se cuenta con instalaciones de combustión de biomasa de pequeña escala, como calderas de baja potencia y quemadores, y un prototipo de filtro electrostático, con el que se comenzará el trabajo investigador. Además, se cuenta con diferentes sistemas de medida de las emisiones, tanto analizadores de gases como dispositivos de caracterización de las partículas emitidas. Con todo, se estudiará de forma experimental la evolución temporal de la eficiencia del equipo y cómo esta disminuye con ciertos factores inherentes al funcionamiento como pueden ser el ensuciamiento de los electrodos, los arranques y paradas en la instalación o la inestabilidad en la temperatura de los gases y en el suministro eléctrico. Además, se tratará de controlar los parámetros más influyentes en el funcionamiento para analizar las posibles mejoras del sistema. Se espera que los resultados contribuyan al desarrollo y mejora del prototipo de filtro electrostático existente y al diseño de un futuro modelo comercial que cumpla con las limitaciones anteriormente expuestas.Este proxecto de tese enmárcase nalgunhas das actividades investigadoras levadas a cabo polo Grupo de Tecnoloxía Enerxética-GTE da Universidade de Vigo, centrado en sistemas domésticos de combustión de biomasa. Os problemas de contaminación e saúde humana asociados á emisión de partículas na combustión de biomasa xeran a necesidade de retención das mesmas, non só a nivel industrial, senón tamén a nivel doméstico. Neste contexto, o coste final do produto é un factor limitador, así como a comodidade para o usuario á hora de levar a cabo o mantemento do dispositivo. Ademais, conxuntamente coas dúas restricións anteriores, búscase minimizar todo o posible a emisión de partículas. En vista das limitacións dalgúns dos dispositivos existentes actualmente no mercado para adaptalos a pequena escala, analizarase a tecnoloxía do filtro electrostático para reducir as emisións de materia partículada xeradas polos equipos de biomasa de baixa potencia. No grupo de investigación cóntase con instalacións de combustión de biomasa de pequena escala, como caldeiras de baixa potencia e queimadores, e un prototipo de filtro electrostático, co que se comezará o traballo investigador. Ademais, cóntase con diferentes sistemas de medida das emisións, tanto analizadores de gases coma dispositivos de caracterización das partículas emitidas. Con todo, estudiarase de maneira experimental a evolución temporal da eficiencia do equipo e como esta diminúe con certos factores inherentes ó funcionamento como poden ser a acumulación de materia nos eléctrodos, os arranques e paradas na instalación ou a inestabilidade da temperatura dos gases e do subministro eléctrico. Ademais, tentaranse controlar os parámetros máis influentes no funcionamento para analizar as posibles melloras do sistema. Espérase que os resultados contribúan ó desenvolvemento e mellora do prototipo de filtro electrostático existente e ó deseño dun futuro modelo comercial que cumpra coas limitacións expostas anteriormente.This project thesis belongs to some research activities which are carried out by the Energetic Technology Group-GTE from the University of Vigo, whose main focus is on domestic systems for biomass combustion. The problems related to pollution and human health linked to the particle matter emissions from biomass combustion trigger the need to remove them from the flue gas, not only in industrial facilities, but also in small scale devices. In this regard, the investment required to acquire such a product is a constraining factor, as it is the ease for maintenance of the system. In addition to these two conditions, the highest collection efficiency possible is desirable. Considering that some of the current technology that is available in the market faces obstacles to be adapted to smaller scale, the electrostatic filter will be analysed to reduce the particle matter emissions produced by small scale biomass combustion systems. The research group previously mentioned has some facilities available, such as a small scale pellet boiler and some biomass burners, and a prototype of an electrostatic filter, which is the beginning of the research project. Furthermore, there are different devices to measure emissions, such as gaseous emission analysers and particle matter characterisers. All in all, the methodology is an experimentally analysis of the retention efficiency over operating time of the system and how it is reduced by different parameters intrinsic to the working conditions, for example, the deposition of particle matter on the electrodes, the starts and stops of the system, and the instability of the gas temperature and the electricity supply. Moreover, the key parameters of the proper working conditions will be studied in order to make a review of the possible improvements of the system. The results of this thesis are expected to contribute to both the development and improvement of the current electrostatic filter prototype, and the design of a future commercial product that fulfils the earlier constraints

    Viability of agricultural and forestry residues as biomass fuels in the Galicia-North Portugal Region: an experimental study

    Get PDF
    In this study, an experimental approach was utilized to assess the viability of three biomass fuels in a small laboratory-scale combustor. Three feedstocks currently considered as residues were selected based on their widespread presence in the Euroregion Galicia-North Portugal, and some were modified to improve their behavior by removing fine particles or adding substances to increase the melting point of the ashes. The experimental facility was a highly modifiable, fixed-bed combustor with air-staging capabilities and a wide array of sensors intended to measure a large quantity of parameters. A series of tests was performed to cover the widest range of total air flows possible for the facility, with values of 0.223, 0.279 and 0.334 kg/m²s being used, while 30% of the total air flow enters from below the combustion bed and 70% over it. Results from the proximate and elemental analyses show high proportions of ash in every fuel compared to commercial wood pellets, and empirical deposition indexes suggest a high risk of fouling and slagging. Testing confirmed the analysis predictions, resulting in the kiwi- and vine-based fuels not being suitable for a facility without ash elimination systems. Some modifications of the gorse fuel showed improved behavior compared to unmodified gorse fuel, namely, the addition of a 2% mass fraction of CaCO3 and the removal of fine particles. The former prevented ash sintering, and the latter greatly decreased the fouling of the heat exchanger tubes. These results suggest that some of the vegetal species studied might be suitable for their use in small-scale biomass burners, and besides the accuracy of one of the deposition indexes used is confirmed.European Regional Development Fund | Ref. 0015_BIOMASA AP_1_EXunta de Galicia | Ref. ED481A-2019/225Ministerio de Educación, Cultura y Deporte | Ref. FPU-15/0243

    ATLANTIC BIRD TRAITS

    No full text
    Scientists have long been trying to understand why the Neotropical region holds the highest diversity of birds on Earth. Recently, there has been increased interest in morphological variation between and within species, and in how climate, topography, and anthropogenic pressures may explain and affect phenotypic variation. Because morphological data are not always available for many species at the local or regional scale, we are limited in our understanding of intra- and interspecies spatial morphological variation. Here, we present the ATLANTIC BIRD TRAITS, a data set that includes measurements of up to 44 morphological traits in 67,197 bird records from 2,790 populations distributed throughout the Atlantic forests of South America. This data set comprises information, compiled over two centuries (1820–2018), for 711 bird species, which represent 80% of all known bird diversity in the Atlantic Forest. Among the most commonly reported traits are sex (n = 65,717), age (n = 63,852), body mass (n = 58,768), flight molt presence (n = 44,941), molt presence (n = 44,847), body molt presence (n = 44,606), tail length (n = 43,005), reproductive stage (n = 42,588), bill length (n = 37,409), body length (n = 28,394), right wing length (n = 21,950), tarsus length (n = 20,342), and wing length (n = 18,071). The most frequently recorded species are Chiroxiphia caudata (n = 1,837), Turdus albicollis (n = 1,658), Trichothraupis melanops (n = 1,468), Turdus leucomelas (n = 1,436), and Basileuterus culicivorus (n = 1,384). The species recorded in the greatest number of sampling localities are Basileuterus culicivorus (n = 243), Trichothraupis melanops (n = 242), Chiroxiphia caudata (n = 210), Platyrinchus mystaceus (n = 208), and Turdus rufiventris (n = 191). ATLANTIC BIRD TRAITS (ABT) is the most comprehensive data set on measurements of bird morphological traits found in a biodiversity hotspot; it provides data for basic and applied research at multiple scales, from individual to community, and from the local to the macroecological perspectives. No copyright or proprietary restrictions are associated with the use of this data set. Please cite this data paper when the data are used in publications or teaching and educational activities. © 2019 The Authors. Ecology © 2019 The Ecological Society of Americ
    corecore