85 research outputs found

    Spatial and phylogenetical closeness between chimpanzees and humans and health consequences. Study case of Kibale national park, Uganda

    Get PDF
    Chimpanzee, our closest relative, is today severely threatened by habitat fragmentation. As a consequence, people and chimpanzees live in increasing proximity. In order to estimate the risks for both species due to such changes, we aim at understanding if chimpanzees avoid the interface and limit occasions of contact with human beings. Fifteen years of research on two chimpanzee communities at Kibale National Park (Uganda) demonstrate that chimpanzees do not avoid forest boundaries, cross tarmac road and that human activities are frequent in the protected area. Direct consequences on chimpanzee health include severe mutilations due to poaching. The diagnosis of similar parasites in both species underlines the potential risk of interspecific transmission and the necessity to expand such study for public health and conservation issuesLe ChimpanzĂ©, espĂšce vivante la plus proche phylogĂ©nĂ©tiquement de l’homme, est aujourd’hui menacĂ©e de disparition en particulier par la fragmentation des forĂȘts tropicales. Afin d’évaluer les risques pour les deux espĂšces de cette proximitĂ© spatiale en potentielle augmentation, notre objectif est d’étudier si les chimpanzĂ©s Ă©vitent les interfaces et si leur santĂ© tĂ©moignent de ces Ă©ventuels contacts. Quinze annĂ©es de recherche sur deux communautĂ©s de chimpanzĂ©s sauvages du parc national de Kibale (Ouganda) montrent que les chimpanzĂ©s n’évitent pas les lisiĂšres, traversent une route Ă  fort trafic et que les activitĂ©s humaines en forĂȘt sont frĂ©quentes. Nos observations rĂ©vĂšlent des consĂ©quences sĂ©vĂšres sur leur santĂ©: mutilations dues au braconnage et dĂ©tection d’agents pathogĂšnes similaires, impliquant probablement des transmissions interspĂ©cifiques. Dans un contexte oĂč les maladies Ă©mergentes peuvent entraĂźner des consĂ©quences fatales sur la santĂ© des hommes et des chimpanzĂ©s, il est primordial d’approfondir ces travaux pour la santĂ© publique et la conservatio

    Activity and Habitat Use of Chimpanzees (Pan troglodytes verus) in the Anthropogenic Landscape of Bossou, Guinea, West Africa

    Get PDF
    Many primate populations inhabit anthropogenic landscapes. Understanding their long-term ability to persist in such environments and associated real and perceived risks for both primates and people is essential for effective conservation planning. Primates in forest–agricultural mosaics often consume cultivars to supplement their diet, leading to potentially negative encounters with farmers. When crossing roads, primates also face the risk of encounters with people and collision with vehicles. Chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa, face such risks regularly. In this study, we aimed to examine their activity budget across habitat types and the influence of anthropogenic risks associated with cultivated fields, roads, and paths on their foraging behavior in noncultivated habitat. We conducted 6-h morning or afternoon follows daily from April 2012 to March 2013. Chimpanzees preferentially used forest habitat types for traveling and resting and highly disturbed habitat types for socializing. Wild fruit and crop availability influenced seasonal habitat use for foraging. Overall, chimpanzees preferred mature forest for all activities. They showed a significant preference for foraging at >200 m from cultivated fields compared to 0–100 m and 101–200 m, with no effect of habitat type or season, suggesting an influence of associated risk. Nevertheless, the chimpanzees did not actively avoid foraging close to roads and paths. Our study reveals chimpanzee reliance on different habitat types and the influence of human-induced pressures on their activities. Such information is critical for the establishment of effective land use management strategies in anthropogenic landscapes

    Study of the free supercoiling of chromosomal DNA of the bacteria Escherichia coli

    No full text
    La molĂ©cule d’ADN d’un chromosome dĂ©condensĂ© a toujours une taille supĂ©rieure au volume de la cellule. Elle doit donc ĂȘtre compactĂ©e tout en restant fonctionnelle pour les grandes fonctions cellulaires telles que l’expression des gĂšnes, la rĂ©plication et la sĂ©grĂ©gation fidĂšle des chromosomes. Cette compaction fait appel Ă  une structuration finement rĂ©gulĂ©e Ă  diffĂ©rentes Ă©chelles chez la bactĂ©rie Escherichia coli. A l’échelle molĂ©culaire, le chromosome est maintenu sous une forme surenroulĂ©e nĂ©gative par deux types de surenroulement, l’un « contraint » par la fixation de protĂ©ines Ă  l’ADN formant le nuclĂ©oĂŻde, et l’autre « libre », diffusible le long du chromosome. A l’échelle sub-cellulaire, le chromosome d'E. coli est composĂ© de quatre rĂ©gions chromosomiques appelĂ©es Macro-Domaines (MD) (Ori, Right, Left, Ter), isolĂ©es spatialement et gĂ©nĂ©tiquement, ainsi que de deux rĂ©gions non structurĂ©es (NSR, NSL). La structuration du MD Ter rĂ©sulte de la liaison de dimĂšres de la protĂ©ine MatP sur 22 sĂ©quences palindromiques matS de 13 pb. L’absence de MatP entraĂźnant une dĂ©condensation relative de l’ADN dans cette rĂ©gion, il est supposĂ© qu’un tĂ©tramĂšre de MatP ponte deux sites matS. Mon projet de thĂšse a consistĂ© Ă  Ă©tudier le contrĂŽle de la topologie de l’ADN chromosomique chez la bactĂ©rie E. coli et Ă  montrer sa relation avec l’organisation en MD et la formation de la chromatine. J’ai adaptĂ© un systĂšme rapporteur basĂ© sur la rĂ©action de rĂ©solution du transposon gamma delta (Tn1000) qui implique la formation d’une structure d’ADN surenroulĂ©e. Ce test a permis de mesurer Ă  la fois le niveau de surenroulement de la molĂ©cule d’ADN mais Ă©galement sa capacitĂ© Ă  coulisser, rĂ©vĂ©lant la prĂ©sence de barriĂšres topologiques. Ces travaux montrent que le niveau de surenroulement diffusible varie localement et suivant les conditions de croissance, impliquant un rĂŽle prĂ©pondĂ©rant de la rĂ©plication, de la transcription et des protĂ©ines de fixation Ă  l’ADN. Cependant, le systĂšme Res ne suffit pas Ă  dĂ©terminer le mĂ©canisme prĂ©cis par lequel l’ADN est contraint par un dĂ©terminant comme MatP ; un systĂšme optimal devra combiner les rĂ©sultats de capture de conformation de chromosome, de Microscopie Ă  Super Resolution et de mesure du surenroulement.Decondensed DNA molecule of a chromosome is always larger than the volume of the cell. It must therefore be compacted while remaining functional for the major cellular functions such as gene expression, replication and faithful segregation of chromosomes. This compaction uses a tightly regulated structure at different scales in the bacterium Escherichia coli. At the molecular level, the chromosome is maintained under a negative supercoiled form by two types of supercoiling, one "constrained" by the DNA binding protein forming the nucleoid and the other "free" and diffusible along the chromosome. At the subcellular level, the chromosome of E. coli is composed of four chromosomal regions called Macro-Areas (R) (Ori, Right, Left, Ter), spatially and genetically isolated, and two unstructured regions (NSR NSL) .The structure of the MD results from the Ter dimer protein binding of MatP palindromic sequences of 22 bp 13 masts. As the absence of MatP causes relative decondensation of DNA in this region, it is assumed that a tetramer of two MatP bounds two matS sites. My thesis project was to study the control of the chromosomal DNA topology in E. coli and to show its relationship with the organization in MD and chromatin. I’ve adapted a suitable reporter system based on the reaction of resolution of the gamma delta (Tn1000) transposon which involves the formation of a supercoiled DNA structure. This test was used to measure both the level of DNA supercoiling molecule but also its ability to slide, revealing the presence of topological barriers. This work shows that the level of free supercoiling varies locally according to the conditions of growth, implying a major role in the replication, transcription and protein binding to DNA. However, Res system is not sufficient to determine the precise mechanism by which DNA is constrained by a determinant as MatP; an optimal system will combine the results of capture of chromosome conformation of Microscopy Super Resolution and measurement of supercoiling

    Design for 3D printing of multi-material components for a robotic exoskeleton steering device

    No full text
    Additive manufacturing (AM) has grown considerably in recent years in many fields: aeronautics, automotive, aerospace, food and also an important part in the medical sector [1]. Indeed, producing parts with excellent dimensional control, low weight and multi materials, while having few limits regarding its level of complexity (geometry), is a major advantage compared to traditional processes (drilling, milling, turning, etc.). Therefore, 3D printing is today one of the most suitable technologies to meet the needs of health professionals, thanks to the possibility of customisation and reproducibility of the manufactured parts. In this context, this article develops and analyses the multi-material manufacturing via additive manufacturing of a component of a lower limb robotic exoskeleton incorporating a force sensor. In details, it contains the approaches used, the proposed solutions and their validation and, finally, a life cycle assessment of the productObjectius de Desenvolupament Sostenible::3 - Salut i BenestarObjectius de Desenvolupament Sostenible::9 - IndĂșstria, InnovaciĂł i Infraestructur

    Kiri Peterburi Teaduste Akadeemiale

    Get PDF
    Cibot, Pierre Martial, 1727-1780, prantsuse ajaloolane, Peterburi TA liigeTĂ€nukiri Peterburi TA liikmeks valimise puhu

    Introduction to the special issue: Tool use among Ugandan forest fragment chimpanzees

    No full text
    Version anglaise Chimpanzees are considered to be one of the most frequent tool users in the animal kingdom (McGrew, 1992). They usually use tools manufactured from natural materials, such as sticks, stones, leaves or grass, for obtaining food and for exploring their environment (including tools for extracting, probing, and pounding) (Whiten et al., 1999). Additionally, tools may be used in social contexts and for cleaning their bodies (Goodall, 1986). While tool use is widespread among chimp..

    Verre, Design et Infographie ou les "carnets noirs" de l'ordinateur

    Get PDF

    Etude du surenroulement diffusible de l'ADN chromosomique chez la bactérie Escherichia Coli

    No full text
    Decondensed DNA molecule of a chromosome is always larger than the volume of the cell. It must therefore be compacted while remaining functional for the major cellular functions such as gene expression, replication and faithful segregation of chromosomes. This compaction uses a tightly regulated structure at different scales in the bacterium Escherichia coli. At the molecular level, the chromosome is maintained under a negative supercoiled form by two types of supercoiling, one "constrained" by the DNA binding protein forming the nucleoid and the other "free" and diffusible along the chromosome. At the subcellular level, the chromosome of E. coli is composed of four chromosomal regions called Macro-Areas (R) (Ori, Right, Left, Ter), spatially and genetically isolated, and two unstructured regions (NSR NSL) .The structure of the MD results from the Ter dimer protein binding of MatP palindromic sequences of 22 bp 13 masts. As the absence of MatP causes relative decondensation of DNA in this region, it is assumed that a tetramer of two MatP bounds two matS sites. My thesis project was to study the control of the chromosomal DNA topology in E. coli and to show its relationship with the organization in MD and chromatin. I’ve adapted a suitable reporter system based on the reaction of resolution of the gamma delta (Tn1000) transposon which involves the formation of a supercoiled DNA structure. This test was used to measure both the level of DNA supercoiling molecule but also its ability to slide, revealing the presence of topological barriers. This work shows that the level of free supercoiling varies locally according to the conditions of growth, implying a major role in the replication, transcription and protein binding to DNA. However, Res system is not sufficient to determine the precise mechanism by which DNA is constrained by a determinant as MatP; an optimal system will combine the results of capture of chromosome conformation of Microscopy Super Resolution and measurement of supercoiling.La molĂ©cule d’ADN d’un chromosome dĂ©condensĂ© a toujours une taille supĂ©rieure au volume de la cellule. Elle doit donc ĂȘtre compactĂ©e tout en restant fonctionnelle pour les grandes fonctions cellulaires telles que l’expression des gĂšnes, la rĂ©plication et la sĂ©grĂ©gation fidĂšle des chromosomes. Cette compaction fait appel Ă  une structuration finement rĂ©gulĂ©e Ă  diffĂ©rentes Ă©chelles chez la bactĂ©rie Escherichia coli. A l’échelle molĂ©culaire, le chromosome est maintenu sous une forme surenroulĂ©e nĂ©gative par deux types de surenroulement, l’un « contraint » par la fixation de protĂ©ines Ă  l’ADN formant le nuclĂ©oĂŻde, et l’autre « libre », diffusible le long du chromosome. A l’échelle sub-cellulaire, le chromosome d'E. coli est composĂ© de quatre rĂ©gions chromosomiques appelĂ©es Macro-Domaines (MD) (Ori, Right, Left, Ter), isolĂ©es spatialement et gĂ©nĂ©tiquement, ainsi que de deux rĂ©gions non structurĂ©es (NSR, NSL). La structuration du MD Ter rĂ©sulte de la liaison de dimĂšres de la protĂ©ine MatP sur 22 sĂ©quences palindromiques matS de 13 pb. L’absence de MatP entraĂźnant une dĂ©condensation relative de l’ADN dans cette rĂ©gion, il est supposĂ© qu’un tĂ©tramĂšre de MatP ponte deux sites matS. Mon projet de thĂšse a consistĂ© Ă  Ă©tudier le contrĂŽle de la topologie de l’ADN chromosomique chez la bactĂ©rie E. coli et Ă  montrer sa relation avec l’organisation en MD et la formation de la chromatine. J’ai adaptĂ© un systĂšme rapporteur basĂ© sur la rĂ©action de rĂ©solution du transposon gamma delta (Tn1000) qui implique la formation d’une structure d’ADN surenroulĂ©e. Ce test a permis de mesurer Ă  la fois le niveau de surenroulement de la molĂ©cule d’ADN mais Ă©galement sa capacitĂ© Ă  coulisser, rĂ©vĂ©lant la prĂ©sence de barriĂšres topologiques. Ces travaux montrent que le niveau de surenroulement diffusible varie localement et suivant les conditions de croissance, impliquant un rĂŽle prĂ©pondĂ©rant de la rĂ©plication, de la transcription et des protĂ©ines de fixation Ă  l’ADN. Cependant, le systĂšme Res ne suffit pas Ă  dĂ©terminer le mĂ©canisme prĂ©cis par lequel l’ADN est contraint par un dĂ©terminant comme MatP ; un systĂšme optimal devra combiner les rĂ©sultats de capture de conformation de chromosome, de Microscopie Ă  Super Resolution et de mesure du surenroulement
    • 

    corecore