18 research outputs found

    Petrogenesis of Siletzia: the world’s youngest oceanic plateau

    Get PDF
    Siletzia is an accreted Palaeocene-Eocene Large Igneous Province, preserved in the northwest United States and southern Vancouver Island. Although previous workers have suggested that components of Siletzia were formed in tectonic settings including back arc basins, island arcs and ocean islands, more recent work has presented evidence for parts of Siletzia to have formed in response to partial melting of a mantle plume. In this paper, we integrate geochemical and geochronological data to investigate the petrogenetic evolution of the province. The major element geochemistry of the Siletzia lava flows is used to determine the compositions of the primary magmas of the province, as well as the conditions of mantle melting. These primary magmas are compositionally similar to modern Ocean Island and Mid-Ocean Ridge lavas. Geochemical modelling of these magmas indicates they predominantly evolved through fractional crystallisation of olivine, pyroxenes, plagioclase, spinel and apatite in shallow magma chambers, and experienced limited interaction with crustal components. Further modelling indicates that Siletzia magmatism was derived from anomalously hot mantle, consistent with an origin in a mantle plume. This plume has been suggested to have been the same as that responsible for magmatism within the Yellowstone Plateau. Trace element compositions of the most primitive Siletzia lavas are similar to suites associated with the Yellowstone Mantle Plume, suggesting that the two provinces were derived from compositionally similar sources. Radiogenic isotope systematics for Siletzia consistently overlap with some of the oldest suites of the Yellowstone Magmatic Province. Therefore, we suggest Siletzia and the Yellowstone Mantle Plume are part of the same, evolving mantle plume system. Our new geochronological data show the province was emplaced during the time when Eocene sea surface temperatures were their highest. The size of Siletzia makes the province a potential contributing factor to the biospheric perturbation observed in the early Eocene

    Petrological and geochemical characterisation of the sarsen stones at Stonehenge.

    Get PDF
    Little is known of the properties of the sarsen stones (or silcretes) that comprise the main architecture of Stonehenge. The only studies of rock struck from the monument date from the 19th century, while 20th century investigations have focussed on excavated debris without demonstrating a link to specific megaliths. Here, we present the first comprehensive analysis of sarsen samples taken directly from a Stonehenge megalith (Stone 58, in the centrally placed trilithon horseshoe). We apply state-of-the-art petrographic, mineralogical and geochemical techniques to two cores drilled from the stone during conservation work in 1958. Petrographic analyses demonstrate that Stone 58 is a highly indurated, grain-supported, structureless and texturally mature groundwater silcrete, comprising fine-to-medium grained quartz sand cemented by optically-continuous syntaxial quartz overgrowths. In addition to detrital quartz, trace quantities of silica-rich rock fragments, Fe-oxides/hydroxides and other minerals are present. Cathodoluminescence analyses show that the quartz cement developed as an initial <10 μm thick zone of non-luminescing quartz followed by ~16 separate quartz cement growth zones. Late-stage Fe-oxides/hydroxides and Ti-oxides line and/or infill some pores. Automated mineralogical analyses indicate that the sarsen preserves 7.2 to 9.2 area % porosity as a moderately-connected intergranular network. Geochemical data show that the sarsen is chemically pure, comprising 99.7 wt. % SiO2. The major and trace element chemistry is highly consistent within the stone, with the only magnitude variations being observed in Fe content. Non-quartz accessory minerals within the silcrete host sediments impart a trace element signature distinct from standard sedimentary and other crustal materials. 143Nd/144Nd isotope analyses suggest that these host sediments were likely derived from eroded Mesozoic rocks, and that these Mesozoic rocks incorporated much older Mesoproterozoic material. The chemistry of Stone 58 has been identified recently as representative of 50 of the 52 remaining sarsens at Stonehenge. These results are therefore representative of the main stone type used to build what is arguably the most important Late Neolithic monument in Europe

    The Early Proterozoic Matachewan Large Igneous Province: Geochemistry, Petrogenesis, and Implications for Earth Evolution

    Get PDF
    The Matachewan Large Igneous Province (LIP) is interpreted to have formed during the early stages of mantle plume-induced continental break-up in the early Proterozoic. When the Matachewan LIP is reconstructed to its original configuration with units from the Superior Craton and other formerly adjacent blocks (Karelia, Kola, Wyoming and Hearne), the dyke swarms, layered intrusions and flood basalts, emplaced over the lifetime of the province, form one of the most extensive magmatic provinces recognized in the geological record. New geochemical data allow, for the first time, the Matachewan LIP to be considered as a single, coherent entity and show that Matachewan LIP rocks share a common tholeiitic composition and trace element geochemistry, characterized by enrichment in the most incompatible elements and depletion in the less incompatible elements. This signature, ubiquitous in early Proterozoic continental magmatic rocks, may indicate that the Matachewan LIP formed through contamination of the primary magmas with litho-spheric material or that the early Proterozoic mantle had a fundamentally different composition from the modern mantle. In addition to the radiating geometry of the dyke swarms, a plume origin for the Matachewan LIP is consistent with the geochemistry of some of the suites; these suites are used to constrain a source mantle potential temperature of c. 1500-1550 degrees C. Comparison of these mantle potential temperatures with estimated temperatures for the early Proterozoic upper mantle indicates that they are consistent with a hot mantle plume source for the magmatism. Geochemical data from coeval intrusions suggest that the plume head was compositionally heterogeneous and sampled material from both depleted and enriched mantle. As has been documented with less ancient but similarly vast LIPs, the emplacement of the Matachewan LIP probably had a significant impact on the early Proterozoic global environment. Compilation of the best age estimates for various suites shows that the emplacement of the Matachewan LIP occurred synchronously with the Great Oxidation Event. We explore the potential for the eruption of this LIP and the emission of its associated volcanic gases to have been a driver of the irreversible oxygenation of the Earth

    A mantle plume origin for the Palaeoproterozoic Circum-Superior Large Igneous Province

    No full text
    The Circum-Superior Large Igneous Province (LIP) consists predominantly of ultramafic-mafic lavas and sills with minor felsic components, distributed as various segments along the margins of the Superior Province craton. Ultramafic-mafic dykes and carbonatite complexes of the LIP also intrude the more central parts of the craton. Most of this magmatism occurred ∼1880 Ma. Previously a wide range of models have been proposed for the different segments of the CSLIP with the upper mantle as the source of magmatism

    Lithologic and geochemical composition of samples from the Circum Superior Belt, North America

    No full text
    The ca. 1880 Ma Circum-Superior Large Igneous Province (LIP) consists of a number of discontinuous segments known to cover a significant portion of the margin of the Superior Province craton in North America. New geochemical and isotopic data from western segments of this LIP support a common origin for the these segments and suggest that magmatism in the Lake Superior region may have been fed through the ~ 600 km long Pickle Crow dyke from a source north of the Fox River Belt in northeastern Manitoba. The Fox River Belt, Pickle Crow dyke and sections of the Hemlock Formation in the Lake Superior region possess trace element signatures which are similar to those of more recent oceanic plateaux. The Hemlock Formation displays a heterogeneous geochemical signature. This chemical heterogeneity can in part be explained by lithospheric contamination and possibly by source heterogeneity. The tectonomagmatic setting in which these igneous rocks were formed could have involved a mantle plume. Evidence supporting a plume origin includes high MgO volcanic rocks, high calculated degrees of partial melting and geochemical signatures similar to those of oceanic plateaux
    corecore