23 research outputs found
North Atlantic Ocean-atmosphere interaction on intraseasonal time scales
Summer 2004.Also issued as author's thesis (M.S.) -- Colorado State University, 2004.NSF grant ATM-320959, NSF grant ATM-0132190, and National Science Foundation on cover.Includes bibliographical references.A substantial fraction of midlatitude sea surface temperature (SST) variability on time scales ranging from months to years can be interpreted as the passive thermodynamic response of the ocean mixed layer to stochastic atmospheric forcing. Subsequently, the dominant structures of monthly and seasonal mean Northern Hemisphere SST variability owe their existence to variations in the extratropical atmosphere. To what extent midlatitude SST variability, in tum, gives rise to anomalies in the dominant structures of extratropical atmospheric variability remains unclear. Presumably, if the extratropical atmosphere exhibits a deep and statistically significant response to midlatitude SST anomalies, the dynamics of the response should occur on time scales shorter than the monthly and seasonal mean data used in most observational analyses of midlatitude atmosphere-ocean interaction. The motivation of the thesis is to investigate the interaction between North Atlantic SST variability and the extratropical atmospheric circulation on intraseasonal time scales. First, the climatology of the North Atlantic SST field and the overlying atmospheric circulation is described. The largest variance in intraseasonal and seasonal mean SST anomalies is located within a zone of enhanced SST gradients in the Gulf Stream extension. The region of maximum SST variance also underlies a region of marked wintertime cyclogenesis over the western edge of the North Atlantic storm track. Patterns of North Atlantic weekly SST variability are further investigated using Empirical Orthogonal Function (EOF) analysis. EOFs of both weekly summertime and wintertime SST anomalies reflect a mix of two patterns, variability in the Gulf Stream extension region and a meridionally banded structure of SST anomalies commonly referred to as the tripole. These patterns are most clearly evident in EOFs based on intraseasonal wintertime SST anomalies. Wintertime atmosphere-ocean interaction on intraseasonal time scales is then examined using lagged correlation/regression analysis. The results show that the tripole and variability in the Gulf Stream extension region emerge not only as the leading EOFs of intraseasonal wintertime SST variability but also in association with the leading pattern of Northern Hemisphere atmospheric variability, referred to as the Northern Annular Mode (NAM). Consistent with previous results, the strongest correlations between midlatitude SSTs and the NAM occur when variations in the NAM lead the tripole by ~2 weeks. However, the present results also show a coherent and statistically significant pattern of SST anomalies over the Gulf Stream extension region that precedes changes in the NAM by ~2 weeks
On the Observed Relationships between Variability in Gulf Stream Sea Surface Temperatures and the Atmospheric Circulation over the North Atlantic
The advent of increasingly high-resolution satellite observations and numerical models has led to a series of advances in understanding the role of midlatitude sea surface temperature (SST) in climate variability, especially near western boundary currents (WBC). Observational analyses suggest that ocean dynamics play a central role in driving interannual SST variability over the Kuroshio–Oyashio and Gulf Stream extensions. Numerical experiments suggest that variations in the SST field within these WBC regions may have a much more pronounced influence on the atmospheric circulation than previously thought. In this study, the authors examine the observational support for (or against) a robust atmospheric response to midlatitude SST variability in the Gulf Stream extension. To do so, they apply lead–lag analysis based on daily mean data to assess the evidence for two-way coupling between SST anomalies and the atmospheric circulation on transient time scales, building off of previous studies that have utilized weekly data. A novel decomposition approach is employed to demonstrate that atmospheric circulation anomalies over the Gulf Stream extension can be separated into two distinct patterns of midlatitude atmosphere–ocean interaction: 1) a pattern that peaks 2–3 weeks before the largest SST anomalies in the Gulf Stream extension, which can be viewed as the “atmospheric forcing,” and 2) a pattern that peaks several weeks after the largest SST anomalies, which the authors argue can be viewed as the “atmospheric response.” The latter pattern is linearly independent of the former and is interpreted as the potential response of the atmospheric circulation to SST variability in the Gulf Stream extension
Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperate reconstruction
Occupying 14% of the world’s surface, the Southern Ocean plays a fundamental role in global climate, ocean circulation, carbon cycling and Antarctic ice-sheet stability. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our understanding of how marine-atmosphere-ice domains interact on multi-decadal timescales and the impact of anthropogenic forcing. Here we integrate climate-sensitive tree growth with ocean and atmospheric observations on southwest Pacific subantarctic islands that lie at the boundary of polar and subtropical climates (52–54˚S). Our annually-resolved temperature reconstruction captures regional change since the 1870s and demonstrates a significant increase in variability from the mid-twentieth century, a phenomenon predating the observational record. Climate reanalysis and modelling shows a parallel change in tropical Pacific sea surface temperatures that generate an atmospheric Rossby wave train which propagates across a large part of the Southern Hemisphere during the austral spring and summer
Observational evidence of reemergence in the extratropical Southern Hemisphere
Observations of subsurface temperatures are used to examine the winter-to-winter “reemergence” of sea surface temperature (SST) anomalies in the extratropical South Pacific Ocean. Reemergence is the mechanism through which SST anomalies formed in the late winter are sequestered beneath the relatively shallow summer mixed layer and then reentrained into the deepening mixed layer during the following autumn/winter. Although several studies have extensively examined reemergence in the Northern Hemisphere (NH), this is the first study to use observations of subsurface temperatures to document reemergence in the extratropical Southern Hemisphere (SH). The SH subsurface data reveal a pronounced reemergence signal in the western extratropical South Pacific. In this region, surface thermal anomalies formed during late SH winter are observed to persist below the summertime mixed layer and reemerge at the surface during the following early winter months. As such, SST anomalies formed during late winter are strongly correlated with SST anomalies during the following early winter but are not significantly correlated with SST anomalies during the intervening summer months. The results based on subsurface data are robust to small changes in the period of analysis and are qualitatively similar to existing evidence of reemergence in the NH. Analyses of independent SST data reveal that reemergence is widespread in the western extratropical South Pacific basin but is less discernible in SST anomalies over the eastern part of the basin
Observations of large-scale ocean-atmosphere interaction in the Southern Hemisphere
The authors provide a detailed examination of observed ocean–atmosphere interaction in the Southern Hemisphere (SH). Focus is placed on the observed relationships between variability in SH extratropical sea surface temperature (SST) anomalies, the Southern Annular Mode (SAM), and the El Niño–Southern Oscillation (ENSO). Results are examined separately for the warm (November–April) and cold (May–October) seasons and for monthly and weekly time scales. It is shown that the signatures of the SAM and ENSO in the SH SST field vary as a function of season, both in terms of their amplitudes and structures. The role of surface turbulent and Ekman heat fluxes in driving seasonal variations in the SAM- and ENSO-related SST anomalies is investigated. Analyses of weekly data reveal that variability in the SAM tends to precede anomalies in the SST field by ∼1 week, and that the e-folding time scale of the SAM-related SST field anomalies is at least 4 months. The persistence of the SAM-related SST anomalies is consistent with the passive thermal response of the Southern Ocean to variations in the SAM, and seasonal variations in the persistence of the SAM-related SST anomalies are consistent with the seasonal cycle in the depth of the ocean mixed layer
Extratropical Cyclogenesis Changes in Connection with Tropospheric ENSO Teleconnections to the North Atlantic: Role of Stationary and Transient Waves
International audienceThis study investigates mechanisms for changes in wintertime extratropical cyclogenesis over North America and the North Atlantic during different phases of El Niño-Southern Oscillation (ENSO). Insights into the relationship between the ENSO-North Atlantic teleconnection and the cyclogenesis changes are provided by diagnosing the relative roles of stationary wave propagation and transient eddies in setting cyclogenesis-conducive large-scale circulation anomalies. During La Niña winters, Rocky Mountain and Greenland cyclogenesis are enhanced, while Gulf Stream cyclogenesis is reduced. Diagnostics suggest that stationary waves of tropical origin work in tandem with transient eddies to amplify the ridge over the northeastern Pacific, establishing background flow anomalies that favor Rocky Mountain cyclogenesis; downstream, more transient eddies with an anticyclonic tilt push the North Atlantic jet poleward, favoring cyclogenesis near Greenland, while contributions from stationary waves are small. During central Pacific El Niño winters, the cyclogenesis situation is essentially the opposite: Rocky Mountain and Greenland cyclo-genesis are reduced, while Gulf Stream cyclogenesis is enhanced. The analyses are consistent with stationary waves and transient eddies acting to weaken the climatological ridge over the northeastern Pacific, creating a more zonal Pacific jet; downstream, transient eddies with a cyclonic tilt push the North Atlantic jet equa-torward, favoring Gulf Stream cyclogenesis. Anomalies in cyclogenesis frequencies, and the relative roles of transient and stationary waves, during eastern Pacific El Niño winters are associated with larger uncertainties
North Atlantic atmosphere-ocean interaction on intraseasonal time scales
The authors examine wintertime atmosphere–ocean interaction on weekly time scales over the North Atlantic sector. Consistent with previous results, it is found that the strongest interactions between the ocean and atmosphere occur when the atmosphere leads. However, the authors also find a spatially coherent and statistically significant pattern of sea surface temperature anomalies over the Gulf Stream extension region that precedes changes in the leading mode of Northern Hemisphere atmospheric variablilty by ∼2 weeks
Southern hemisphere ocean-atmosphere interaction
The motivation of this observational study is to provide a comprehensive analysis of ocean-atmosphere interaction in the Southern Ocean, with an emphasis on the relationships between the Southern Annular Mode (SAM) and observed variations in Southern Ocean sea-surface temperatures (SSTs). Lagged and contemporaneous relationships between SSTs and the SAM are examined on both monthly and weekly time scales. A complete diagnosis of the physical mechanisms that underlie the observed relationships is also provided. The implications of the results for large scale Southern Hemisphere SST variability and for observed trends in the Southern Ocean are discussed.Pages: 1253-125