1,297 research outputs found

    Kepler-10 c: a 2.2 Earth Radius Transiting Planet in a Multiple System

    Get PDF
    The Kepler mission has recently announced the discovery of Kepler-10 b, the smallest exoplanet discovered to date and the first rocky planet found by the spacecraft. A second, 45 day period transit-like signal present in the photometry from the first eight months of data could not be confirmed as being caused by a planet at the time of that announcement. Here we apply the light curve modeling technique known as BLENDER to explore the possibility that the signal might be due to an astrophysical false positive (blend). To aid in this analysis we report the observation of two transits with the Spitzer Space Telescope at 4.5 μm. When combined, they yield a transit depth of 344 ± 85 ppm that is consistent with the depth in the Kepler passband (376 ± 9 ppm, ignoring limb darkening), which rules out blends with an eclipsing binary of a significantly different color than the target. Using these observations along with other constraints from high-resolution imaging and spectroscopy, we are able to exclude the vast majority of possible false positives. We assess the likelihood of the remaining blends, and arrive conservatively at a false alarm rate of 1.6 × 10^(–5) that is small enough to validate the candidate as a planet (designated Kepler-10 c) with a very high level of confidence. The radius of this object is measured to be R_p = 2.227^(+0.052)_(–0.057) R_⊕ (in which the error includes the uncertainty in the stellar properties), but currently available radial-velocity measurements only place an upper limit on its mass of about 20 M_⊕. Kepler-10 c represents another example (with Kepler-9 d and Kepler-11 g) of statistical "validation" of a transiting exoplanet, as opposed to the usual "confirmation" that can take place when the Doppler signal is detected or transit timing variations are measured. It is anticipated that many of Kepler's smaller candidates will receive a similar treatment since dynamical confirmation may be difficult or impractical with the sensitivity of current instrumentation

    Numerical study of jets produced by conical wire arrays on the Magpie pulsed power generator

    Full text link
    The aim of this work is to model the jets produced by conical wire arrays on the MAGPIE generator, and to design and test new setups to strengthen the link between laboratory and astrophysical jets. We performed the modelling with direct three-dimensional magneto-hydro-dynamic numerical simulations using the code GORGON. We applied our code to the typical MAGPIE setup and we successfully reproduced the experiments. We found that a minimum resolution of approximately 100 is required to retrieve the unstable character of the jet. We investigated the effect of changing the number of wires and found that arrays with less wires produce more unstable jets, and that this effect has magnetic origin. Finally, we studied the behaviour of the conical array together with a conical shield on top of it to reduce the presence of unwanted low density plasma flows. The resulting jet is shorter and less dense.Comment: Accepted for publication in Astrophysics & Space Science. HEDLA 2010 conference procedings. Final pubblication will be available on Springe

    A Technique to Derive Improved Proper Motions for Kepler Objects of Interest

    Get PDF
    We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper motion precision we combine first moment centroids of Kepler pixel data from a single Season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced proper motion diagrams, analogous to a Hertzsprung-Russell diagram, for stars identified as Kepler Objects of Interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. With UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-bayesian priors) astrometry for a single test Channel (21) and Season (0) spanning two years yields proper motions with an average per-coordinate proper motion error of 1.0 millisecond of arc per year, over a factor of three better than existing catalogs. We apply a mapping between a reduced proper motion diagram and an HR diagram, both constructed using HST parallaxes and proper motions, to estimate Kepler Object of Interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as the rest of the Kepler field.Comment: Accepted to The Astronomical Journal 15 August 201

    Clearance of human papillomavirus related anal condylomas after oral and endorectal multistrain probiotic supplementation in an HIV positive male: A case report.

    Get PDF
    Abstract Go to: Introduction: Here we present the case of a 56-year-old human immunodeficiency virus (HIV)-infected man with multiple anal condylomas and positivity for human papilloma virus (HPV) 18 on anal brushing. Biopsies of the anal mucosa led to the diagnosis of Bowen's disease and a subsequent pelvic magnetic resonance imaging (MRI) scan evidenced multiple reactive lymphoadenopathies and large intra-anal condylomas. The patient was treated with a complete excision of Bowen's lesion and with a 4 months course of supplementation with a high concentration multistrain probiotic formulation administered orally and by rectal instillation with the purpose to reduce local inflammation and to enhance local mucosal immunity. Go to: Conclusion: An MRI performed at the end of the supplementation period evidenced the clearance of the anal condylomas previously described and no evidence of residual lymphadenopathies. Trials are therefore required to confirm this therapeutic possibility and for a better understanding of the mechanisms by which this specific probiotic formulation interacts with local epithelium when administered by the anal route

    First Results from the Transit Ephemeris Refinement and Monitoring Survey (TERMS)

    Get PDF
    Transiting planet discoveries have yielded a plethora of information towards understanding the structure and atmospheres of extra-solar planets. These discoveries have been restricted to the short-period or low-periastron distance regimes due to the bias inherent in the geometric transit probability. Through the refinement of planetary orbital parmaters, and hence reducing the size of transit windows, long-period planets become feasible targets for photometric follow-up. Here we describe the TERMS project which is monitoring these host stars at predicted transit times

    Cosmological Reionization Around the First Stars: Monte Carlo Radiative Transfer

    Get PDF
    We study the evolution of ionization fronts around the first proto-galaxies by using high resolution numerical cosmological (Lambda+CDM model) simulations and Monte Carlo radiative transfer methods. We present the numerical scheme in detail and show the results of test runs from which we conclude that the scheme is both fast and accurate. As an example of interesting cosmological application, we study the reionization produced by a stellar source of total mass M=2 10^8 M_\odot turning on at z=12, located at a node of the cosmic web. The study includes a Spectral Energy Distribution of a zero-metallicity stellar population, and two Initial Mass Functions (Salpeter/Larson). The expansion of the I-front is followed as it breaks out from the galaxy and it is channeled by the filaments into the voids, assuming, in a 2D representation, a characteristic butterfly shape. The ionization evolution is very well tracked by our scheme, as realized by the correct treatment of the channeling and shadowing effects due to overdensities. We confirm previous claims that both the shape of the IMF and the ionizing power metallicity dependence are important to correctly determine the reionization of the universe.Comment: 8 pages, 8 figures. Revised version, accepted for publication by MNRA

    Expected Number and Flux Distribution of Gamma-Ray-Burst Afterglows with High Redshifts

    Full text link
    If Gamma-Ray-Bursts (GRBs) occur at high redshifts, then their bright afterglow emission can be used to probe the ionization and metal enrichment histories of the intervening intergalactic medium during the epoch of reionization. In contrast to other sources, such as galaxies or quasars, which fade rapidly with increasing redshift, the observed infrared flux from a GRB afterglow at a fixed observed age is only a weak function of its redshift. This results from a combination of the spectral slope of GRB afterglows and the time-stretching of their evolution in the observer's frame. Assuming that the GRB rate is proportional to the star formation rate and that the characteristic energy output of GRBs is ~10^{52} ergs, we predict that there are always ~15 GRBs from redshifts z>5 across the sky which are brighter than ~100 nJy at an observed wavelength of ~2 \mu m. The infrared spectrum of these sources could be taken with the future Next Generation Space Telescope, as a follow-up on their early X-ray localization with the Swift satellite.Comment: 29 pages, 14 figures; submitted to Ap

    Analysis of short-term blood pressure variability in pheochromocytoma/paraganglioma patients

    Get PDF
    Data on short-term blood pressure variability (BPV), which is a well-established cardiovascular prognostic tool, in pheochromocytoma and paraganglioma (PPGL) patients is still lack and conflicting. We retrospectively evaluated 23 PPGL patients referred to our unit from 2010 to 2019 to analyze 24 h ambulatory blood pressure monitoring (24-h ABPM)-derived markers of short-term BPV, before and after surgical treatment. PPGL diagnosis was assessed according to guidelines and confirmed by histologic examination. The 24-h ABPM-derived markers of short-term BPV included: circadian pressure rhythm; standard deviation (SD) and weighted SD (wSD) of 24-h, daytime, and night-time systolic and diastolic blood pressure (BP); average real variability (ARV) of 24-h, daytime, and night-time systolic and diastolic BP. 7 males and 16 females of 53 ± 18 years old were evaluated. After surgical resection of PPGL we found a significant decrease in 24-h systolic BP ARV (8.8 ± 1.6 vs. 7.6 ± 1.3 mmHg, p < 0.001), in 24-h diastolic BP ARV (7.5 ± 1.6 vs. 6.9 ± 1.4 mmHg, p = 0.031), and in wSD of 24-h diastolic BP (9.7 ± 2.0 vs 8.8 ± 2.1 mmHg, p = 0.050) comparing to baseline measurements. Moreover, baseline 24-h urinary metanephrines significantly correlated with wSD of both 24-h systolic and diastolic BP. Our study highlights as PPGL patients, after proper treatment, show a significant decrease in some short-term BPV markers, which might represent a further cardiovascular risk factor

    The 21cm Signature of the First Stars

    Get PDF
    We predict the 21-cm signature of the first metal-free stars. The soft X-rays emitted by these stars penetrate the atomic medium around their host halos, generating Lyman alpha photons that couple the spin and kinetic temperatures. These creates a region we call the Lyman alpha sphere, visible in 21-cm against the CMB, which is much larger than the HII region produced by the same star. The spin and kinetic temperatures are strongly coupled before the X-rays can substantially heat the medium, implying that a strong 21-cm absorption signal from the adiabatically cooled gas in Hubble expansion around the star is expected when the medium has not been heated previously. A central region of emission from the gas heated by the soft X-rays is also present although with a weaker signal than the absorption. The Lyman alpha sphere is a universal signature that should be observed around any first star illuminating its vicinity for the first time. The 21-cm radial profile of the Lyman alpha sphere can be calculated as a function of the luminosity, spectrum and age of the star. For a star of a few hundred solar masses and zero metallicity (as expected for the first stars), the physical radius of the Lyman alpha sphere can reach tens of kiloparsecs. The first metal-free stars should be strongly clustered because of high cosmic biasing; this implies that the regions producing a 21-cm absorption signal may contain more than one star and will generally be irregular and not spherical, because of the complex distribution of the gas. We discuss the feasiblity of detecting these Lyman alpha spheres, which would be present at redshifts z30z\sim 30 in the Cold Dark Matter model. Their observation would represent a direct proof of the detection of a first star.Comment: replaced with ApJ accepted version. Many minor revisions and additional references, major results unchange
    corecore