322 research outputs found

    On the emergence of Raman signals characterizing multicenter nanoscale interactions

    Get PDF
    Raman scattering is most commonly associated with a change in vibrational state within one molecule, with signals in the corresponding spectrum widely used to identify material structures. When the corresponding theory is developed using quantum electrodynamics, the fundamental scattering process is described by a single photon of one radiation mode being annihilated with the concurrent creation of another photon; the two photon energies differ by an amount corresponding to the transfer of vibrational energy within the system. Here, we consider nanoscale interactions between neighboring molecules to mediate the process, by way of a virtual photon exchange to connect the evolution of the two molecular states. We consider both a single and pair of virtual photon exchanges. Our analysis deploys two realistic assumptions: in each pairwise interaction the two components are considered to be (i) chemically different and (ii) held in a fixed orientation with respect to each other, displaced by an amount equivalent to the near-field region; resulting in higher order dependences on displacement R becoming increasingly significant, and at the limit the short-range R-6 term can even dominate over R-3 dependence. In our investigation one center undergoes a change in vibrational energy; each neighboring molecule returns to the electronic and vibrational state in which it began. For the purposes of providing results, a Stokes transition has been assumed; analogous principles hold for the anti-Stokes counterpart. Experimentally, there is no change to the dependence on the intensity of laser light. However, the various mechanisms presented herein lead to different selection rules applying in each instance. In some cases specifically identifiable mechanisms will be active for a given transition, leading to new and characteristic lines in the Raman spectrum. A thorough investigation of all physically achievable mechanisms will be detailed in this work

    HD DVD substrates for surface enhanced Raman spectroscopy analysis : fabrication, theoretical predictions and practical performance

    Get PDF
    Commercial HD DVDs provide a characteristic structure of encoding pits which were utilized to fabricate cost efficiently large area SERS substrates for chemical analysis. The study targets the simulation of the plasmonic structure of the substrates and presents an easily accessible fabrication process to obtain highly sensitive SERS active substrates. The theoretical simulation predicted the formation of supermodes under optimized illumination conditions, which were verified experimentally. First tests of the developed SERS substrates demonstrated their excellent potential for detecting vitamin A and pro- vitamin A at low concentration levels

    Doubly resonant optical nanoantenna arrays for polarization resolved measurements of surface-enhanced Raman scattering

    Full text link
    We report that rhomb-shaped metal nanoantenna arrays support multiple plasmonic resonances, making them favorable bio-sensing substrates. Besides the two localized plasmonic dipole modes associated with the two principle axes of the rhombi, the sample supports an additional grating-induced surface plasmon polariton resonance. The plasmonic properties of all modes are carefully studied by far-field measurements together with numerical and analytical calculations. The sample is then applied to surface-enhanced Raman scattering measurements. It is shown to be highly efficient since two plasmonic resonances of the structure were simultaneously tuned to coincide with the excitation and the emission wave- length in the SERS experiment. The analysis is completed by measuring the impact of the polarization angle on the SERS signal.Comment: 13 pages, 5 figure

    Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique

    Get PDF
    Pyocyanin (PYO) is a metabolite specific for Pseudomonas aeruginosa. In the case of immunocompromised patients, it is currently considered a biomarker for life-threating Pseudomonas infections. In the frame of this study it is shown, that PYO can be detected in aqueous solution by employing surface-enhanced Raman spectroscopy (SERS) combined with a microfluidic platform. The achieved limit of detection is 0.5 μM. This is ~2 orders of magnitude below the concentration of PYO found in clinical samples. Furthermore, as proof of principle, the SERS detection of PYO in the saliva of three volunteers was also investigated. This body fluid can be collected in a non-invasive manner and is highly chemically complex, making the detection of the target molecule challenging. Nevertheless, PYO was successfully detected in two saliva samples down to 10 μM and in one sample at a concentration of 25 μM. This indicates that the molecules present in saliva do not inhibit the efficient adsorption of PYO on the surface of the employed SERS active substrates
    corecore