5,792 research outputs found

    Healing skills from the underserved patient perspective

    Get PDF

    Optimal traps in graphene

    Get PDF
    We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into a non-linear first-order differential equation for scattering phase shift, using the so-called variable phase method. This allows us to utilize the Levinson Theorem to find zero-energy bound states created electrostatically in realistic structures. These confined states are formed at critical potential strengths, which leads to us posit the use of `optimal traps' to combat the chiral tunneling found in graphene, which could be explored experimentally with an artificial network of point charges held above the graphene layer. We also discuss scattering on these states and find the zero angular momentum states create a dominant peak in scattering cross-section as energy tends towards the Dirac point energy, suggesting a dominant contribution to resistivity.Comment: 11 pages, 5 figure

    Geometric, aerodynamic, and kinematic characteristics of two twin keel parawings during deployment

    Get PDF
    Flight test data on geometric, aerodynamic, and kinematic characteristics of two twin keel parawings during deploymen

    Photoionization and Photoelectric Loading of Barium Ion Traps

    Get PDF
    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.Comment: 5 pages, Accepted to PRA 3/20/2007 -fixed typo -clarified figure 3 caption -added reference [15

    Quenched Cold Accretion of a Large Scale Metal-Poor Filament due to Virial Shocking in the Halo of a Massive z=0.7 Galaxy

    Get PDF
    Using HST/COS/STIS and HIRES/Keck high-resolution spectra, we have studied a remarkable HI absorbing complex at z=0.672 toward the quasar Q1317+277. The HI absorption has a velocity spread of 1600 km/s, comprises 21 Voigt profile components, and resides at an impact parameter of D=58 kpc from a bright, high mass [log(M_vir/M_sun) ~ 13.7] elliptical galaxy that is deduced to have a 6 Gyr old, solar metallicity stellar population. Ionization models suggest the majority of the structure is cold gas surrounding a shock heated cloud that is kinematically adjacent to a multi-phase group of clouds with detected CIII, CIV and OVI absorption, suggestive of a conductive interface near the shock. The deduced metallicities are consistent with the moderate in situ enrichment relative to the levels observed in the z ~ 3 Ly-alpha forest. We interpret the HI complex as a metal-poor filamentary structure being shock heated as it accretes into the halo of the galaxy. The data support the scenario of an early formation period (z > 4) in which the galaxy was presumably fed by cold-mode gas accretion that was later quenched via virial shocking by the hot halo such that, by intermediate redshift, the cold filamentary accreting gas is continuing to be disrupted by shock heating. Thus, continued filamentary accretion is being mixed into the hot halo, indicating that the star formation of the galaxy will likely remain quenched. To date, the galaxy and the HI absorption complex provide some of the most compelling observational data supporting the theoretical picture in which accretion is virial shocked in the hot coronal halos of high mass galaxies.Comment: 20 pages, 9 figures, submitted to Ap

    Afterslip Moment Scaling and Variability from a Global Compilation of Estimates

    Get PDF
    Aseismic afterslip is postseismic fault sliding that may significantly redistribute crustal stresses and drive aftershock sequences. Afterslip is typically modeled through geodetic observations of surface deformation on a case-by-case basis, thus questions of how and why the afterslip moment varies between earthquakes remain largely unaddressed. We compile 148 afterslip studies following 53 Mw6.0–9.1 earthquakes, and formally analyze a subset of 88 well-constrained kinematic models. Afterslip and coseismic moments scale near-linearly, with a median Spearman's rank correlation coefficient (CC) of 0.91 after bootstrapping (95% range: 0.89–0.93). We infer that afterslip area and average slip scale with coseismic moment as urn:x-wiley:21699313:media:jgrb55593:jgrb55593-math-0001 and urn:x-wiley:21699313:media:jgrb55593:jgrb55593-math-0002, respectively. The ratio of afterslip to coseismic moment (Mrel) varies from 300% (interquartile range: 9%–32%). Mrel weakly correlates with Mo (CC: −0.21, attributed to a publication bias), rupture aspect ratio (CC: −0.31), and fault slip rate (CC: 0.26, treated as a proxy for fault maturity), indicating that these factors affect afterslip. Mrel does not correlate with mainshock dip, rake, or depth. Given the power-law decay of afterslip, we expected studies that started earlier and spanned longer timescales to capture more afterslip, but Mrel does not correlate with observation start time or duration. Because Mrel estimates for a single earthquake can vary by an order of magnitude, we propose that modeling uncertainty currently presents a challenge for systematic afterslip analysis. Standardizing modeling practices may improve model comparability, and eventually allow for predictive afterslip models that account for mainshock and fault zone factors to be incorporated into aftershock hazard models
    • …
    corecore