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Optimal traps in graphene
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We transform the two-dimensional Dirac-Weyl equation, which governs the charge carriers in graphene, into
a nonlinear first-order differential equation for scattering phase shift, using the so-called variable-phase method.
This allows us to utilize the Levinson theorem, relating scattering phase shifts of a slow particle to its bound
states, to find zero-energy bound states created electrostatically in realistic structures. These confined states are
formed at critical potential strengths, which leads us to posit the use of “optimal traps” to combat the chiral
tunneling found in graphene: this could be explored experimentally with an artificial network of point charges
held above the graphene layer. We also discuss scattering on these states and find that the s states create a
dominant peak in the scattering cross section as the energy tends towards the Dirac point energy, suggesting a
dominant contribution to the resistivity.
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I. INTRODUCTION

The electronic properties of the two-dimensional (2D)
material graphene [1,2] are of great interest due to the quasirel-
ativistic nature of its spectrum. Interesting transport effects
such as chiral (Klein) tunneling [3–7], vacuum polarization [8],
atomic collapse [9,10], and the minimum conductivity at the
Dirac point [11] have been widely discussed in the literature.
The topic of elastic scattering in clean, low-temperature
graphene, which can occur due to charged impurities, ripples,
or strain fields, has been addressed by many authors [12–14].

However, despite its extraordinary properties there is a
major obstacle stopping graphene from usurping silicon in
the electronics industry, namely, its lack of a bandgap. This
frustrates attempts to perform digital logic with graphene
due to the difficulty in turning off the flow of chiral charge
carriers, which always wish to conduct. Attempts at opening
a gap in monolayer graphene have focused on cutting into
nanoribbons [15], chemical functionalization [16], and strain
engineering [17], which can unfortunately blunt the remark-
able electronic properties that make graphene so attractive in
the first place. Here we propose a method not to open a gap, but
to switch off the chiral tunneling by considering zero-energy
states, when the Fermi energy coincides with the Dirac points,
such that fully confined states are predicted to be able to form
due to the absence of pseudospin [18–20]. These states are also
the most important factor when considering resonant scattering
in graphene.

Despite the appearance of sophisticated experimental tech-
niques for probing resonances and the modification of the
density of states in the continuum [22], the search for fully
confined (square-integrable) states remains a significant ongo-
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ing task. Efficient manipulation of the Fermi level requires the
presence of a back gate in close proximity to the graphene,
which makes the numerous beautiful results stemming from
the long-range behavior of the bare Coulomb potential [9]
somewhat far from experimental reality, as the presence of
image charges in the gate material (or screening effects) makes
any realistic potential fall at large distances more rapidly than
1/r [21]. It is important to emphasize that any fast-decaying
potential cannot produce a bound state at nonzero energy [23].
Indeed, the asymptotics of the wave function is a Bessel
function decaying at long distances as r−1/2, and so one is
led to consider zero-energy states instead. We also note that
there is increasing interest in zero modes of the Dirac equation
in the condensed matter community due to the possibilities of
observing both the elusive Majorana fermions [24] or, indeed,
fractionally charged excitations [25].

While low-energy resonant scattering in monolayer
graphene has been extensively studied both theoreti-
cally [9,23,26,27,29–34] and experimentally [35–38], the
importance of fully confined zero-energy states in realistic
structures has not been fully appreciated until recently [39].
In most of these papers, quasibound states, where only one
wave-function component is confined or when the wave
function is non-square-integrable, have been considered for
resonant scattering. Previously, primarily fixed-depth circular
wells [23,26,40,41] or the Coulomb potential [9,27] have
been investigated, but in this paper we concentrate on
smooth [20,42], short-range potentials which are defined
by two parameters, characterizing both strength and spread.
Notably, this is the only case where the commonly used
single-valley approximation for graphene can be truly justified.

We study confined states and resonant scattering in
graphene due to either scanning tunneling microscopy
(STM) [43] of tip-induced potentials or due to some charge
displaced out of the plane [44], with careful consideration of
truly bound zero modes. The strength parameter can arise
due to, for example, the size of the charge in the STM,
while the spread parameter is linked to the distances from
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the scanning tunneling microscope tip to the graphene layer
and back gate [20]. We investigate both the conditions required
for a zero-energy bound state to form and the effect of such
states on the energy dependence of the scattering cross section
and resistivity contributions of resonant scatterers.

A complication that may arise from our proposed method
of probing via STM is the appearance of a localized strain
field [45] induced from the scanning tunneling microscope
tip [46–48] in addition to the electrostatic potential we are
interested in. Confinement due to the mechanically generated
pseudomagnetic field is predicted to lead to an enhancement of
the density of states in the deformed region [49–51]. However,
the effect of tip-induced bumps, which arise via van der
Waals forces, can be diminished by avoiding approaching the
graphene membrane too closely, as the nature of the interaction
is supershort range, for example, as in the Lennard-Jones
potential.

To carry out our investigations of realistic, short-range (due
to the necessity of a gate in all measurements) potentials
we develop the ultrarelativistic analog of the variable-phase
method (VPM) [52,53], which was found to be useful for
tackling scattering problems governed by the Schrödinger
equation in two dimensions [54–58], for use with the 2D Dirac-
Weyl equation—allowing us to consider the charge carriers in
graphene. The VPM was originally developed [59] for use
with nonrelativistic wave equations in the 1930s as a neat
tool to calculate physically relevant quantities directly, rather
than having to extract them from the wave function, and has
recently been developed for use with the Dirac-Weyl equation
in quasi-1D problems [60,61] due to the intense interest in
graphene in the condensed matter community. Here we derive
a first-order equation from which we can immediately find
the scattering phase shift. This is advantageous, as important
physical properties directly follow, such as the number of
bound states (from the Levinson theorem) [55,56,62], the
scattering and transport cross sections (from standard elastic
scattering theory) [63], the number of states around a potential
barrier (using the Friedel sum rule) [64], and the energy change
due to the impurity interacting with neighboring electrons (the
Fumi theorem) [65].

We have neglected effects due to rippling of or dislocations
in the graphene membrane. We also do not discuss scattering
by multiple electrostatic barriers [66,67] or by magnetic
barriers [68–70], but our method can be generalized to account
for the presence of vector potentials.

The rest of this work is as follows. We outline the logic
behind the VPM and give a detailed derivation of the phase
equation for the Dirac-Weyl equation in Sec. II, which allows
us to motivate the Levinson theorem. Section III is split into
two parts. First, in Sec. III A we count bound states using
the VPM, compare the results of the VPM against both tight-
binding calculations on a finite flake and an exact solution of
the Dirac equation, and posit a network of optimal traps which
are able to hold and release carriers on demand. Second, in
Sec. III B we apply elastic scattering theory in conjunction
with the VPM, which allows us to investigate the influence of
short-range scattering on some transport properties and unveil
a remarkable formula relating phase shift to the nature of the
potential well, valid at high energies. Finally, we summarize
and discuss our results in Sec. IV. In Appendix A we show

how quantum confinement of zero-energy states can occur
for a quite general class of potential wells decaying at large
distances as an inverse power law. In Appendix B we detail the
key results for the simple case of scattering by a circular finite-
potential well, in analogy with sharp, circular mass barriers,
which have also been discussed in the literature [71].

II. FORMALISM

The 2D Dirac-Weyl Hamiltonian governing the low-energy
charge carriers of graphene on a Dirac cone is [2]

Ĥ = vF σ · p̂ + U (r) + σz�, (1)

where vF ≈ c/300 is the Fermi velocity of the Dirac particles,
σ = (σx,σy,σz) are the Pauli spin matrices, U (r) is a central
potential, and we include � as the mass term for generality.
A nonzero mass can arise due to chemical modifications,
substrate-induced gaps [72] (e.g., on h-BN), or strain engi-
neering [73]. We move into polar coordinates (r,θ ) for circular
symmetry and separate the variables via the following ansatz
for the two-component spinor wave function

�(r,θ ) = eimθ

√
2π

(
χA(r)

ieiθχB(r)

)
, m = 0, ± 1, ± 2, . . . , (2)

where the subscripts A and B label the two sublattices of the
graphene chicken-wire lattice. This choice of wave function
leads to two coupled first-order differential equations for the
radial wave-function components χA,B(r),

(
d

dr
+ m + 1

r

)
χB = (k − V (r) − �)χA, (3a)

(
− d

dr
+ m

r

)
χA = (k − V (r) + �)χB, (3b)

with V (r) = U (r)/�vF , � = �/�vF , and k = E/�vF ,
where E is the eigenenergy. Rearranging Eq. (3) into a second-
order differential equation for a single radial wave-function
component χA(r), we obtain for the massless case

d2

dr2
χA(r) +

(
1

r
+ 1

k − V (r)

dV (r)

dr

)
d

dr
χA(r)

+
(

(k − V (r))2 − m

r

1

k − V (r)

dV (r)

dr
− m2

r2

)
χA(r) = 0.

(4)

We consider potentials of the form V (r → ∞) = 0 such that
at large distances Eq. (4) reduces to [74]

d2

dr2
χA(r) +

(
1

r

)
d

dr
χA(r) +

(
k2 − m2

r2

)
χA(r) = 0, (5)

which is the Bessel equation with the well-known solution
amJm(kr) − bmNm(kr) or, equivalently,

χA(r) = Am[Jm(kr) cos(δm) − Nm(kr) sin(δm)], (6)

where Jm(kr) and Nm(kr) are the Bessel functions of the first
and second kinds, respectively, and δm = arctan(bm/am) is the
scattering phase shift, arising from the difference in phase of
the wave function at r → ∞ compared to the free particle
case.
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We now implement the VPM by treating the constants Am

and δm as functions of the radial coordinate r , such that

χA(r) = Am(r)[Jm(kr) cos (δm(r)) − Nm(kr) sin (δm(r))], (7)

where Am(r) is called the amplitude function and the phase
function δm is the phase shift arising from a potential cutoff
at a distance r . To completely define these newly introduced
functions Am(r) and δm we make the standard [52,53] ansatz
for the first derivative of χA(r) with respect to r ,

χ ′
A(r) = Am(r)[J ′

m(kr) cos (δm(r)) − N ′
m(kr) sin (δm(r))], (8)

where the prime symbol denotes differentiation with respect
to r . Now, setting the full derivative of Eq. (7) equal to Eq. (8)
yields the following useful condition:

A′
m(r)

Am(r)
= δ′

m(r)
Jm(kr) sin (δm(r)) + Nm(kr) cos (δm(r))
Jm(kr) cos (δm(r)) − Nm(kr) sin (δm(r))

. (9)

Upon substituting Eq. (7) and Eq. (8) into the lower coupled
Eq. (3b) we naturally find that the lower radial wave-function
component χB(r) is

χB(r) = Am(r)

k − V (r)

[(
−J ′

m(kr) + m

r
Jm(kr)

)
cos (δm(r))

−
(
−N ′

m(kr) + m

r
Nm(kr)

)
sin (δm(r))

]
. (10)

We can now utilize the upper coupled Eq. (3a): upon substi-
tuting in Eq. (7) and Eq. (10) and eliminating the amplitude
function Am(r) via the application of the condition, Eq. (9),
we obtain the first-order differential equation

d

dr
δm(r) = πr

2
p(r)

[
1

k − V (r)

dV (r)

dr

(
q(r) − m

r
p(r)

)

+ (V (r)2 − 2kV (r))p(r)

]
,

(11)
p(r) = Jm(kr) cos (δm(r)) − Nm(kr) sin (δm(r)),

q(r) = J ′
m(kr) cos (δm(r)) − N ′

m(kr) sin (δm(r)),

where we have introduced the auxiliary functions p(r) and
q(r) and, in addition have used the Wronskian of the Bessel
functions W {Jm(x),Nm(x)} = Jm(x)N ′

m(x) − Nm(x)J ′
m(x) =

−2/(πx) to simplify the final expression [75]. Equation (11)
is the so-called phase equation and is subject to the initial
condition δm(0) = 0, as follows from being in the free particle
limit. We can see from Eq. (11) how the potential V (r)
gradually accumulates the desired phase shift starting from
δm(0) = 0 and finishing with the total phase shift of the
scattering problem, given by

δm = lim
r→∞ δm(r). (12)

This condition ensures that the phase shift is uniquely defined,
avoiding the ambiguity of π that appears in other methods [63].
When investigating bound states in the massless case we can
only consider zero-energy states, where the Neumann function
is divergent and so the following condition is implied:

δm = nπ, n = 1,2,3 . . . . (13)

Equation (13) is related to the Levinson’s theorem for massless
2D Dirac particles, which states a relation between the phase
shift at zero momentum and the number of bound states.

Please note when considering the massive 2D Dirac
particles, as found in gapped graphene, which allow bound
states at finite energy, that an equation analogous to the phase
equation, Eq. (11), can be derived for treating confined states,

d

dr
ηm(r) = −rf (r)

[
1

k − V (r)

dV (r)

dr

(
g(r) − m

r
f (r)

)

+ (V (r)2 − 2kV (r))f (r)

]
,

(14)
f (r) = Im(κr) cos (ηm(r)) − Km(κr) sin (ηm(r)),

g(r) = I ′
m(κr) cos (ηm(r)) − K ′

m(κr) sin (ηm(r)),

where Im(κr) and Km(κr) are the modified Bessel and
Neumann functions, respectively, and the effective wave
vector κ = (�2 − k2)1/2. Equation (14) has been simpli-
fied [75] by noting that the Wronskian of the modified Bessel
functions W {Im(x),Km(x)} = Im(x)K ′

m(x) − Km(x)I ′
m(x) =

−1/x. Notably, Eq. (14) is also relevant for considerations of
the surface states on 3D topological insulators such as Bi2Te3,
where in this case the mass term arises from the exchange
energy from a magnetic insulator [76]. When considering
bound states we note that the modified Bessel function of
the first kind is divergent and so the following condition is
implied,

ηm = (
n − 1

2

)
π, n = 1,2,3, . . . , (15)

which is a representation of the Levinson theorem for the
massive 2D Dirac equation in a central potential, studied
previously using the Green’s function method [77] and via
a utilization of the generalized Sturm-Liouville theorem [78].

III. RESULTS

A. Counting bound states

We now check that we can reproduce known results by
solving the phase equation, Eq. (11), describing the massless
charge carriers of graphene, for the case of zero-energy states
formed in a Lorentzian potential, V (r) = −V0/(1 + (r/d)2),
an analytically solved problem [20]. In this case the condition
for bound states when m � 0 is V0d = 2(N + m), where N =
1,2, . . . is a positive integer. Thus, when solving Eq. (11),
the phase equation for massless Dirac particles, for k → 0 we
should see that the threshold value of V0d is reached just before
the first step in the phase shift–versus–potential strength plot;
as V0d is increased more confined zero-energy states appear.
This is exactly what we find in Fig. 1(a). We also note that the
sign of V0 is irrelevant for the creation of zero-energy confined
states since a well for an electron is a hill for a hole, and vice
versa, thus Fig. 1 has mirror symmetry about the V0d = 0 axis.
At the Dirac point, when the density of states vanishes yet the
conductivity remains finite, these zero-energy states should be
important, as we see later.

While screening affects only the strength of the Coulomb
potential, and not its characteristic decay law [14], due to the
quasirelativistic nature of the carriers in graphene, a cutoff is
necessary at the origin and the presence of an image charge in
the metallic back gate will lead to a dipole-like 1/r3 decay at
large distances, thus a more realistic choice of model potential
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FIG. 1. (Color online) Plots of scaled phase shifts δm/π versus
potential strength V0d for massless Dirac particles, of energy tending
towards 0, incident on (a) the Lorentzian potential and (b) the model
potential of Eq. (16) with the realistic 1/r3 decay. We show results
for angular momentum m = 0, 1, and 2, corresponding to the solid
(red) line, dashed (blue) line, and dotted (green) line, respectively.

is

V (r) = −V0

1 + (r/d)3
. (16)

In Fig. 1(b) we investigate confined states in a trapping
potential given by Eq. (16) and again see a characteristic
threshold in V0d for the emergence of the first bound state,
followed by the signature staircase behavior of confined
zero-energy states. Of course, compared to the exactly solvable
Lorentzian potential, with its accidental degeneracies, the
staircase does not share the same beautiful symmetries and
the condition for full-confined states can be approximated by
V0d ≈ 2.63N + 1.89m − 0.34, which is valid for the range
of parameters used in Fig. 1(b). However, we can now
predict for realistic graphene flakes, where we would expect
charged impurities to cause potentials similar to the type of
Eq. (16), that there is the possibility of the appearance of fully
confined zero-energy states, which are clearly not an artifact
of a particular analytically solvable model potential. Small
perturbations away from the condition for zero-energy states
lead to states with complex energies, which can be ascribed to
a lifetime which is increasingly long for states with a higher
angular momentum [5] and in smoother traps [79].

Note, as we show in Appendix A by considering a general
class of potential wells regular at the origin and decaying like
some power law (which is faster than the Coulomb potential),
that the toy model confinement potential one chooses is not
crucial for the actual existence of zero-energy bound states but
is important for knowing where one should search for them

in terms of potential strength. Thus we have shown that it
is possible to create electrostatic traps holding electrons (or
holes) in the regime where the Fermi level is close to the
Dirac-point energy. Then it should be possible to release these
trapped quasiparticles into the system by a small adjustment
of the trapping potential strength and spread, which will result
in the sought-after on/off behavior.

Such states should be able to be detected in scanning probe
microscopy experiments, as proposed in Ref. [20], where
smoothly changing either the charge on the scanning probe
microscope tips or their distance above the graphene plane,
and continuously holding the Fermi level at the Dirac point
using the back gate, should be sufficient to see confined zero
modes. A network of sparse scanning probe microscope tips
of radius Rtip, separated in a square grid defined by an intertip
separation s, all held at a distance h2 above a metallic back
gate and h2 − h1 above the graphene plane, gives a similarly
behaved potential to Eq. (16), but in a more complicated form,
which can be obtained via the method of images,

U (r) = eQtip

4πε0εr

f (r),

f (r) =
n2∑

j,k=−n1

((x + js)2 + (y + ks)2 + (h2 − h1)2)−1/2

− ((x + js)2 + (y + ks)2 + (h2 + h1)2)−1/2. (17)

Fitting Eq. (16) to Eq. (17) by matching the functions at both
their maximum and their half-maximum values, one finds that
the tip voltage Vtip at which one would see such zero modes is

Vtip = (V0d)N,m

f (0)d

�vF

eRtip
, (18)

subject to the constraint 2f (d) = f (0), where we have seen
from Fig. 1(b) the dimensionless parameter (V0d)N,m�=0 =
4.16, 6.06, 6.79, . . . , such that we are dealing with [80] tip
voltages of the order of tens of millivolts: Vtip = 20 mV, 29 mV,
33 mV, and so on. Thus at particular voltages, optimal traps
are created which can release conducting particles on demand
when the voltage differs from the optimal value.

The existence of confined states opens up the possibility
of Coulomb-blockade-type physics in graphene. Indeed, the
quantum dots created with careful adjustment of the key
parameters can be be seen to be “optimal traps.” An estimate
of the charging energy of the optimal trap, using a simple
disk capacitor model, shows a charging energy of the order of
milli–electron volts; thus, such effects could be seen even at
room temperature. The effect arises due to the tightly confined
nature of the wave function in optimal traps, which leads to
a low capacitance and a significant charging energy, which is
negligible for deconfined states.

We also show in Fig. 2 that the zero modes of the
Dirac equation in the potential, Eq. (16), as predicted in
the continuum model, are indeed present as shown via
tight-binding calculations [81,82]. It is found that the wave
functions have a ringlike structure, which ensures avoidance
of any Klein tunneling effects, i.e., the states are zero-energy
vortices with m �= 0. It is most noticeable how by adjusting
the parameter V0d one can go from a tightly confined state
to a state with a widely spread probability density. The 60◦
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FIG. 2. (Color online) Probability density plots of near-zero-energy states in the model confining potential given by Eq. (16), resulting
from tight-binding calculations for a finite flake. We show example critical V0d = 4.10 (left) and noncritical V0d = 2.60 (middle) states, as
well as the associated cumulative probability plots (right).

rotation symmetry of the numerical results clearly shown in
Fig. 2 is changed to a 120◦ symmetry when the center of
the potential is chosen on one of the carbon atoms instead of
the center of the elementary cell. We have also checked that
the zero modes are robust to the shape of the graphene flake
by investigating triangle and hexagon geometries, with both
zigzag and armchair boundaries. In fact, the bound state on
finite flakes seem to be even more robust than in the infinite,
ideal system, as all effects violating pseudospin conservation
at nonzero energy required by the Weyl equation help to bind
the particle. Nevertheless, our numerical experiments show
that a modest change in potential from the optimal value lead
to complete bound-state dissociation.

B. Resonant scattering

As mentioned previously, once the scattering phase shift
is known a number of other useful physical properties can be
quickly calculated. The partial cross section ζm is

kζm = sin2(δm), (19)

while the total scattering cross section ζ , a measure of the 1D
area felt by incoming particles, and the transport cross section
ζT easily follow from the scattering phase shifts via

ζ = 4

k

∞∑
m=−∞

sin2(δm), ζT = 2

k

∞∑
m=−∞

sin2(δm+1 − δm),

(20)

and we note that for low-energy scattering we can take the near-
s-wave approximation, i.e., only small values of m need to be
considered, as Eq. (20) is derived from partial-wave expansions
where terms with high m are negligible when k → 0. Detailed
derivations of Eqs. (19) and (20) via the 2D elastic scattering
theory adapted for Dirac fermions have been given by Novikov
in Ref. [27] and are exactly the same as in the nonrelativistic
2D case [28].

The energy dependence of the scattering cross section has
previously been considered for a square well [23,26] and we
outline a thorough solution to this problem in Appendix B. We
now revisit the problem with a smooth, short-range potential
given by Eq. (16), which is relevant for gated structures or for
hypercritical charges. Plots of the dimensionless partial cross
section kζm are shown for the case of noncritical [Fig. 3(a)] and
critical [Fig. 3(b)] parameters of the potential, Eq. (16). We find
that, in contrast to the noncritical case, at the critical potential
strength the m = 0 non-square-integrable state does not go to
0 in kζm as quickly as k tends towards 0, and thus the partial
cross section ζm is divergent as the energy tends towards 0. This
is because m = 0 is a resonant state with a non-normalizable
wave function (and a nonzero probability density at the origin,
r = 0) and so such a particle has an enhanced likelihood
of being scattered. Of course, this behavior also manifests
in calculations of the transport scattering cross section via
Eq. (20). The problem of scattering involving ultrashort-range
midgap states, which may arise due to vacancies or cracks, is
closely related.[83]

We also note, in striking contrast to the case of nonrelativis-
tic particles, that at high energies the phase shift δ∞ is nonzero,
which is similar to the 3D relativistic case [84]. Remarkably,
δ∞ is also angular momentum independent, and we find from
Eq. (11) its explicit form,

δ∞ = −
∫ ∞

0
V (r)dr, (21)

such that for the considered potential given by Eq. (16) the
dimensionless partial scattering cross section in the high-
energy limit is given by kζm → sin2(2π/3

√
3V0d). This limit

is already reached for the upper values of kd used in Fig. 3.
Thus, the transport cross section ζT indeed vanishes in the
large-k limit.

The smoking gun of confined zero modes in the laboratory
could be via their contribution to resistivity, which in the
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FIG. 3. (Color online) Plot of the dimensionless partial scattering cross section kζm as a function of the scaled energy k for massless Dirac
particles incident on the model potential with 1/r3 decay given by Eq. (18), with example (a) noncritical potential strength V0d = 1.00 and (b)
critical potential strength V0d = 2.27. We show results for m = 0, 1, and 2, corresponding to the solid (red) line, dashed (blue) line, and dotted
(green) line, respectively.

semiclassical Boltzmann theory can be expressed as [26]

ρ = h

4e2

2ns

πne

kF ζT , (22)

where ns is the density of scatterers and the electron density
ne = k2

F /π in the Fermi limit. We show in Fig. 4 the behavior of
resistivity at small kF d. The presence of confined zero modes
leads to a divergence in resistivity, ρ → ∞, at energies tending
towards 0 in the critical case only. It should be possible to
utilize this consequent drastic suppression of mobility to create
an off state in graphene, which can be explored artificially with
a series of point gates held above the graphene monolayer.
In the noncritical cases, we find that as kF → 0 resistivity
saturates to a constant.

FIG. 4. (Color online) Plot of the resistivity ρ, measured in units
of h/4e2, as a function of the energy kF d for massless Dirac particles
scattering on the model potential with 1/r3 decay. We show results
for the uncritical cases V0d = 1.00 and 3.00, corresponding to the
dotted (red) line and solid (blue) line, respectively, and the critical
cases V0d = 2.27 and 4.87, corresponding to the dashed (green) line
and dot-dashed (purple) line, respectively. We set 2nsd

2 = 1.

IV. DISCUSSION

We have derived the phase equations for the 2D Dirac
equation using the VPM, suitable for use straightaway in
scattering calculations concerning Dirac-Weyl materials such
as graphene. In doing so, we also provide both a numerical
(heuristic) proof of the Levinson theorem for massless 2D
particles and a simple relation for phase shift at high energies.
These phase equations are of first order, and so relatively
undemanding computationally, and have solutions in terms of
scattering phase shifts, thus other desired scattering properties
readily follow. Applying this method to count fully confined
states in graphene, we reproduce a known exact result and go
on to investigate a more physically relevant potential, finding
that at certain potential strengths and spreads zero-energy
bound states are likely to form, a fact that can be exploited
with STM tip potentials.

It should also be mentioned that the existing experi-
ments [85] on atomic clusters on a graphene surface can
arguably be explained by the considered zero-energy states
without involving the atomic collapse picture. These ex-
periments deal with back-gated graphene, which precludes
the use of a long-range Coulomb potential. The measured
wave-function density has a pronounced ringlike structure on
a scale of many lattice constants, instead of a sharp peak at the
atomic scale as expected from “fall-into-the-center” physics.
Moreover, the observed features in the density of states are
very close to zero energy (in fact, on both sides of the Dirac
point) instead of being a few electron volts away from this
energy as expected for a collapsed state.

We have also calculated the energy dependence of the
scattering cross section, finding a major distinction for the
m = 0 mode for critical potential strengths. In this special
case, we predict a dominant peak in scattering cross section at
zero energy, suggesting a high probability of being scattered,
which can be explored experimentally via scanning probe
microscopy. In an experiment with a series of point gates
above the graphene layer, one may be able to use artificial
resonant scattering to switch off the chiral tunneling effect
found in monolayer graphene by greatly reducing the mobility
of carriers.
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Note Added in Proof: After submission of our manuscript,
we became aware of a new experiment [86] reporting confine-
ment of quasibound or so-called whispering-gallery modes in
graphene via a scanning tunneling probe. The highly tunable
setup described, wherein both the electron wavelength and
the tip-induced circular pn junction radius are controlled
independently, suggests that the arguably more exotic truly
bound states (zero-energy vortices) discussed in this paper can
soon be thoroughly probed. Notably, the setup is similar to the
one discussed here and a gate is already present, although its
effect is not discussed.
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APPENDIX A: BOUND STATES IN POTENTIAL WELLS
DECAYING AS A POWER LAW

Let us examine the condition for bound states to form in
regularized potential wells decaying asymptotically as a power
law governed by a parameter p > 1, namely,

V (r) = −V0

{
1 if r � R,(

R
r

)p
if r > R,

(A1)

such that the wave-function components inside the well
are simply Bessel functions and outside the well are the
function r−p/2 product Bessel functions in a new variable,
ξ = V0R(R/r)(p−1)/(p − 1). Bound zero-energy states can
never arise for m = 0,−1, due to the requirement of some
rotation to combat the Klein tunneling phenomenon [20].
Furthermore, some other negative angular momentum states
me � m � −1 are excluded, depending on the power of the
decay, for p > −2me. Thus, as one considers increasingly
short-range interactions, one will find a wider band of “miss-
ing” nonpositive integer angular momentum states cumulating
in me. The potential parameters corresponding to the square-
integrable solutions can be found from the determinant of the
matrix∣∣∣∣J|m|(V0R) J|m+1|(V0R)

J|α|
(

V0R

p−1

)
J|α−1|

(
V0R

p−1

) ∣∣∣∣ = 0, α = m + p/2

p − 1
, (A2)

which can be solved by the usual root-finding methods for the
values of V0R which are able to support confined modes. In
the limit of large V0R 	 1, Eq. (A2) can be rewritten in terms
of elementary functions,∣∣∣∣∣
cos

(
V0R − π

2 |m| − π
4

)
cos

(
V0R − π

2 |m + 1| − π
4

)
cos

(
V0R

p−1 − π
2 |α − 1| − π

4

)
cos

(
V0R

p−1 − π
2 |α| − π

4

)
∣∣∣∣∣ = 0,

(A3)

and the most symmetric case, p = 2, is equivalent to V0R =
π
4 (|m| + |m + 1| + 2n + 1), where n is an integer.

While this somewhat kinky class of potential is not as
realistic as the smooth potentials considered in the text, it
quantitatively demonstrates how bound zero-energy states are
realizable in many situations for fast-decaying potentials. As

expected, a separate analysis for the regularized Coulomb
potential (p = 1) yields no possibility of bound zero-energy
states. The corresponding transcendental equation cannot be
satisfied for any real value of V0R.

APPENDIX B: SCATTERING BY A CIRCULAR
FINITE-POTENTIAL WELL

Let us consider the example of a circular finite-potential
well [23] given by V (r) = −V0�(d − r), where �(z) is the
Heaviside step function, which allows us to obtain the fol-
lowing solutions of Eq. (4): χA(r) = AmJm((k + V0)r) inside
the well and χA(r) = Bm[Jm(kr) cos(δm) − Nm(kr) sin(δm)]
outside the well. Upon finding χB(r) from Eq. (3b) and
matching both wave-function components at the boundary
r = d, we obtain the following expression for the tangent of
the phase shift:

tan(δm)

= Jm((k + V0)d)Jm+1(kd) − Jm+1((k + V0)d)Jm(kd)

Jm((k + V0)d)Nm+1(kd) − Jm+1((k + V0)d)Nm(kd)
.

(B1)

It can be seen that resonances in the scattering cross section do
exist at certain energies, as can be seen by substituting Eq. (B1)
into Eq. (19) or into the more convenient form kζm = 1/(1 +
tan(δm)−2). At energies tending to the Dirac-point energy kζm

and, more importantly, the true partial cross section ζm go
to 0. At high energies we find the expected constant value,
given by kζm → sin2(V0a), as follows from Eq. (21). Both
of these features are shown in Fig. 5(a). One can find the
most prominent resonances of the partial cross section for
this problem, defined by kζm = 1, which can only occur for
some specific potential strengths, which satisfy the condition
Jm((k + V0)d)Nm+1(kd) = Jm+1((k + V0)d)Nm(kd). If there
is a solution to this equation, it is straightforward to find the
resonance energy, which is the global maximum solution of
d
dk

ζm = 0.
In the s-wave approximation, one can see by using Eq. (B1)

in conjunction with Eq. (20) that the contribution to resistivity,
calculated via Eq. (22), is given by [26]

ρ ≈ h

4e2
nsd

2, (B2)

which, of course, can be neglected when the concentration
of scatterers and/or the scattering radius d is small. However,
this analysis neglects the possible existence of confined zero
modes, which can be determined by the condition Jm(V0d) = 0.
The effect of the extended m = 0 state (which occurs at the
zeros of the zeroth Bessel function, V0d = 2.40,5.52, . . . ) is to
see the quantity tan(δm) approach 0 slowly (logarithmically) as
we approach the Dirac-point energy, such that kζ0 effectively
tends to a constant, producing a “superresonance” at zero
energy in the pure partial cross section ζ0, as displayed
in Fig. 5(b). This leads to a noticeable contribution to the
resistivity [26],

ρ ≈ h

4e2

ns

ne

1

ln2(kd)
, (B3)

which is clearly more dominant than that found in Eq. (B2).
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FIG. 5. (Color online) Plot of the dimensionless partial scattering cross section kζm as a function of the scaled energy k for massless
Dirac particles incident on the circular finite-potential well, with (a) noncritical potential strength V0d = 1 and (b) critical potential strength
V0d = 2.40. We show results for m = 0, 1, and 2, corresponding to the solid (red) line, dashed (blue) line, and dotted (green) line, respectively.

We would like to mention an intriguing experiment [87]
which has recently mapped the total cross section for a circular
gated region in a self-assembled molecular-graphene hybrid
and indeed found resonant peaks. These resonances can be

thought of as whispering gallery modes, which have just been
probed in graphene [86] using the tip of a scanning tunneling
microscope, which are directly related to the zero-energy states
discussed in this work.
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M. Ferrier, S. Guéron, C. Glattli, H. Bouchiat, J. N. Fuchs, and
D. L. Maslov, Phys. Rev. Lett. 104, 126801 (2010).

[39] A. Cresti, F. Ortmann, T. Louvet, D. Van Tuan, and S. Roche,
Phys. Rev. Lett. 110, 196601 (2013).

[40] R. L. Heinisch, F. X. Bronold, and H. Fehske, Phys. Rev. B 87,
155409 (2013).

[41] J.-S. Wu and M. M. Fogler, Phys. Rev. B 90, 235402 (2014).
[42] V. V. Zalipaev, D. N. Maksimov, C. M. Linton, and F. V.

Kusmartsev, Phys. Lett. A 377, 216 (2013).
[43] A. Deshpande and B. J. Le Roy, Physica E 44, 743 (2012).
[44] M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, Phys. Rev.

B 76, 233402 (2007).
[45] F. de Juan, A. Cortijo, and M. A. H. Vozmediano, Phys. Rev. B

76, 165409 (2007).
[46] K. Xu, P. Cao, and J. R. Heath, Nano Lett. 9, 4446 (2009).
[47] T. Mashoff, M. Pratzer, V. Geringer, T. J. Echtermeyer, M. C.

Lemme, M. Liebmann, and M. Morgenstern, Nano Lett. 10, 461
(2010).

[48] N. N. Klimov, S. Jung, S. Zhu, T. Li, C. A. Wright, S. D. Solares,
D. B. Newell, N. B. Zhitenev, and J. A. Stroscio, Science 336,
1557 (2012).

[49] D. Moldovan, M. Ramezani Masir, and F. M. Peeters, Phys. Rev.
B 88, 035446 (2013).

[50] R. Carrillo-Bastos, D. Faria, A. Latge, F. Mireles, and N. Sandler,
Phys. Rev. B 90, 041411(R) (2014).

[51] M. Schneider, D. Faria, S. Viola Kusminskiy, and N. Sandler,
Phys. Rev. B 91, 161407(R) (2015).

[52] F. Calogero, Variable Phase Approach to Potential Scattering
(Academic Press, New York, 1967).

[53] V. Babikov, Method of the Phase Functions in Quantum
Mechanics (Nauka, Moscow, 1971).

[54] M. E. Portnoi, Pisma Zh. Tekh. Fiz. 14, 1252 (1988) [Sov. Tech.
Phys. Lett. 14, 547 (1988)].

[55] M. E. Portnoi and I. Galbraith, Solid State Commun. 103, 325
(1997).

[56] M. E. Portnoi and I. Galbraith, Phys. Rev. B 58, 3963 (1998).
[57] M. E. Portnoi and I. Galbraith, Phys. Rev. B 60, 5570 (1999).
[58] H. Ouerdane, R. Varache, M. E. Portnoi, and I. Galbraith, Eur.

Phys. J. B 65, 195 (2008).
[59] P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).
[60] D. A. Stone, C. A. Downing, and M. E. Portnoi, Phys. Rev. B

86, 075464 (2012).

[61] D. S. Miserev, arXiv:1408.5611.
[62] N. Levinson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 25, 3

(1949).
[63] R. G. Newton, Scattering Theory of Waves and Particles (Dover,

Mineola, NY, 2002).
[64] J. Friedel, Philos. Mag. 43, 153 (1952).
[65] F. G. Fumi, Philos. Mag. 46, 1007 (1955).
[66] C. A. Downing, J. Math. Phys. 54, 072101 (2013).
[67] C. A. Downing, Open Physics 11, 977 (2013).
[68] A. De Martino, L. Dell’Anna, and R. Egger, Phys. Rev. Lett. 98,

066802 (2007).
[69] A. Zazunov, A. Kundu, A. Hütten, and R. Egger, Phys. Rev. B
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