528 research outputs found

    Metabolic Responses and Profiling of Bioorganic Phosphates and Phosphate Metabolites in Traumatic Brain Injury

    Get PDF
    This chapter constitutes a review of the recent literature on metabolic response and profiling of bioorganic phosphates and phosphate metabolites in disease related to traumatic brain injury (TBI). In this report we emphasize the emerging role of advanced imaging techniques in both the translational research of TBI biology and in the development of new modalities for the diagnosis and therapy of TBI-related diseases. To date, several neuroimaging techniques have been used for assessing phosphate metabolites related to TBI. These techniques include 31P-MRI/MRS imaging, magnetic resonance imaging, and incorporation of phosphate derivative hydrogels, all of which are of particular interest in identifying TBI. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize properties for therapeutics purposes. In addition, this chapter also discusses the role of endogenous and exogenous phosphates related to TBI. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge

    Review of recently reported Ricin detection techniques focusing on combined immunoassay detection with abrin and saxitoxin in human plasma

    Get PDF
    Increasing non-traditional threats from biological or chemical weapons, the Organisation for the Prohibition of Chemical Weapons (OPCW) have tried to perform the preliminary analysis of biotoxin sample to standardize analysis methods and strengthen analytical capabilities among OPCW member countries. With the changes of new analysis, ROK CBRN Defense Research Institute (CDRI) established enzyme-linked immunosorbent assay (ELISA) and cytotoxicity analysis methods for ricin, abrin, and saxitoxin through the OPCW exercise on Biotoxin sample analysis. Thus, this study aims to established analytical methods (ELISA and cytotoxicity analysis) for the biological toxins called ricin, abrin and saxitoxin according to recent OPCW Biotoxin detection exercise. In particular, to refine practical and effective methods of biological analysis, we reviewed recent research on scientific analysis of ricin as a potential bioterror weapon, letter with ricin sent in White House, and suggested future agendas for preparedness testing

    Wetting and Minimal Surfaces

    Get PDF
    We study minimal surfaces which arise in wetting and capillarity phenomena. Using conformal coordinates, we reduce the problem to a set of coupled boundary equations for the contact line of the fluid surface, and then derive simple diagrammatic rules to calculate the non-linear corrections to the Joanny-de Gennes energy. We argue that perturbation theory is quasi-local, i.e. that all geometric length scales of the fluid container decouple from the short-wavelength deformations of the contact line. This is illustrated by a calculation of the linearized interaction between contact lines on two opposite parallel walls. We present a simple algorithm to compute the minimal surface and its energy based on these ideas. We also point out the intriguing singularities that arise in the Legendre transformation from the pure Dirichlet to the mixed Dirichlet-Neumann problem.Comment: 22 page

    Modal Analysis and Coupling in Metal-Insulator-Metal Waveguides

    Full text link
    This paper shows how to analyze plasmonic metal-insulator-metal waveguides using the full modal structure of these guides. The analysis applies to all frequencies, particularly including the near infrared and visible spectrum, and to a wide range of sizes, including nanometallic structures. We use the approach here specifically to analyze waveguide junctions. We show that the full modal structure of the metal-insulator-metal (MIM) waveguides--which consists of real and complex discrete eigenvalue spectra, as well as the continuous spectrum--forms a complete basis set. We provide the derivation of these modes using the techniques developed for Sturm-Liouville and generalized eigenvalue equations. We demonstrate the need to include all parts of the spectrum to have a complete set of basis vectors to describe scattering within MIM waveguides with the mode-matching technique. We numerically compare the mode-matching formulation with finite-difference frequency-domain analysis and find very good agreement between the two for modal scattering at symmetric MIM waveguide junctions. We touch upon the similarities between the underlying mathematical structure of the MIM waveguide and the PT symmetric quantum mechanical pseudo-Hermitian Hamiltonians. The rich set of modes that the MIM waveguide supports forms a canonical example against which other more complicated geometries can be compared. Our work here encompasses the microwave results, but extends also to waveguides with real metals even at infrared and optical frequencies.Comment: 17 pages, 13 figures, 2 tables, references expanded, typos fixed, figures slightly modifie

    Double quantum dot with integrated charge sensor based on Ge/Si heterostructure nanowires

    Get PDF
    Coupled electron spins in semiconductor double quantum dots hold promise as the basis for solid-state qubits. To date, most experiments have used III-V materials, in which coherence is limited by hyperfine interactions. Ge/Si heterostructure nanowires seem ideally suited to overcome this limitation: the predominance of spin-zero nuclei suppresses the hyperfine interaction and chemical synthesis creates a clean and defect-free system with highly controllable properties. Here we present a top gate-defined double quantum dot based on Ge/Si heterostructure nanowires with fully tunable coupling between the dots and to the leads. We also demonstrate a novel approach to charge sensing in a one-dimensional nanostructure by capacitively coupling the double dot to a single dot on an adjacent nanowire. The double quantum dot and integrated charge sensor serve as an essential building block required to form a solid-state spin qubit free of nuclear spin.Comment: Related work at http://marcuslab.harvard.edu and http://cmliris.harvard.ed

    Teaching tobacco dependence treatment and counseling skills during medical school: rationale and design of the Medical Students helping patients Quit tobacco (MSQuit) group randomized controlled trial

    Get PDF
    INTRODUCTION: Physician-delivered tobacco treatment using the 5As is clinically recommended, yet its use has been limited. Lack of adequate training and confidence to provide tobacco treatment is cited as leading reasons for limited 5A use. Tobacco dependence treatment training while in medical school is recommended, but is minimally provided. The MSQuit trial (Medical Students helping patients Quit tobacco) aims to determine if a multi-modal and theoretically-guided tobacco educational intervention will improve tobacco dependence treatment skills (i.e. 5As) among medical students. METHODS/DESIGN: 10 U.S. medical schools were pair-matched and randomized in a group-randomized controlled trial to evaluate whether a multi-modal educational (MME) intervention compared to traditional education (TE) will improve observed tobacco treatment skills. MME is primarily composed of TE approaches (i.e. didactics) plus a 1st year web-based course and preceptor-facilitated training during a 3rd year clerkship rotation. The primary outcome measure is an objective score on an Objective Structured Clinical Examination (OSCE) tobacco-counseling smoking case among 3rd year medical students from schools who implemented the MME or TE. DISCUSSION: MSQuit is the first randomized to evaluate whether a tobacco treatment educational intervention implemented during medical school will improve medical students\u27 tobacco treatment skills. We hypothesize that the MME intervention will better prepare students in tobacco dependence treatment as measured by the OSCE. If a comprehensive tobacco treatment educational learning approach is effective, while also feasible and acceptable to implement, then medical schools may substantially influence skill development and use of the 5As among future physicians. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved

    Genetic architecture of heart mitochondrial proteome influencing cardiac hypertrophy.

    Get PDF
    Mitochondria play an important role in both normal heart function and disease etiology. We report analysis of common genetic variations contributing to mitochondrial and heart functions using an integrative proteomics approach in a panel of inbred mouse strains called the Hybrid Mouse Diversity Panel (HMDP). We performed a whole heart proteome study in the HMDP (72 strains, n=2-3 mice) and retrieved 848 mitochondrial proteins (quantified in ≥50 strains). High- resolution association mapping on their relative abundance levels revealed three trans-acting genetic loci on chromosomes (chr) 7, 13 and 17 that regulate distinct classes of mitochondrial proteins as well as cardiac hypertrophy. DAVID enrichment analyses of genes regulated by each of the loci revealed that the chr13 locus was highly enriched for complex-I proteins (24 proteins, P=2.2E-61), the chr17 locus for mitochondrial ribonucleoprotein complex (17 proteins, P=3.1E-25) and the chr7 locus for ubiquinone biosynthesis (3 proteins, P=6.9E-05). Follow-up high resolution regional mapping identified NDUFS4, LRPPRC and COQ7 as the candidate genes for chr13, chr17 and chr7 loci, respectively, and both experimental and statistical analyses supported their causal roles. Furthermore, a large cohort of Diversity Outbred mice was used to corroborate Lrpprc gene as a driver of mitochondrial DNA (mtDNA)-encoded gene regulation, and to show that the chr17 locus is specific to heart. Variations in all three loci were associated with heart mass in at least one of two independent heart stress models, namely, isoproterenol-induced heart failure and diet-induced obesity. These findings suggest that common variations in certain mitochondrial proteins can act in trans to influence tissue-specific mitochondrial functions and contribute to heart hypertrophy, eluci- dating mechanisms that may underlie genetic susceptibility to heart failure in human populations

    Modulation Doping via a 2d Atomic Crystalline Acceptor

    Full text link
    Two-dimensional (2d) nano-electronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with \textit{ab initio} calculations establish the large work function and narrow bands of α\alpha-RuCl3_3 enable modulation doping of exfoliated, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE) materials. Short-ranged lateral doping (65 nm{\leq}65\ \text{nm}) and high homogeneity are achieved in proximate materials with a single layer of \arucl. This leads to the highest monolayer graphene (mlg) mobilities ($4,900\ \text{cm}^2/ \text{Vs})atthesehighholedensities() at these high hole densities (3\times10^{13}\ \text{cm}^{-2});andyieldslargerchargetransfertobilayergraphene(blg)(); and yields larger charge transfer to bilayer graphene (blg) (6\times10^{13}\ \text{cm}^{-2}$). We further demonstrate proof of principle optical sensing, control via twist angle, and charge transfer through hexagonal boron nitride (hBN)

    Challenges, solutions and research priorities for sustainable rangelands

    Get PDF
    Australia’s rangeland communities, industries, and environment are under increasing pressures from anthropogenic activities and global changes more broadly. We conducted a horizon scan to identify and prioritise key challenges facing Australian rangelands and their communities, and outline possible avenues to address these challenges, with a particular focus on research priorities. We surveyed participants of the Australian Rangeland Society 20th Biennial Conference, held in Canberra in September 2019, before the conference and in interactive workshops during the conference, in order to identify key challenges, potential solutions, and research priorities. The feedback was broadly grouped into six themes associated with supporting local communities, managing natural capital, climate variability and change, traditional knowledge, governance, and research and development. Each theme had several sub-themes and potential solutions to ensure positive, long-term outcomes for the rangelands. The survey responses made it clear that supporting ‘resilient and sustainable rangelands that provide cultural, societal, environmental and economic outcomes simultaneously’ is of great value to stakeholders. The synthesis of survey responses combined with expert knowledge highlighted that sustaining local communities in the long term will require that the inherent social, cultural and natural capital of rangelands are managed sustainably, particularly in light of current and projected variability in climate. Establishment of guidelines and approaches to address these challenges will benefit from: (i) an increased recognition of the value and contributions of traditional knowledge and practices; (ii) development of better governance that is guided by and benefits local stakeholders; and (iii) more funding to conduct and implement strong research and development activities, with research focused on addressing critical knowledge gaps as identified by the local stakeholders. This requires strong governance with legislation and policies that work for the rangelands. We provide a framework that indicates the key knowledge gaps and how innovations may be implemented and scaled out, up and deep to achieve the resilience of Australia’s rangelands. The same principles could be adapted to address challenges in rangelands on other continents, with similar beneficial outcomes
    corecore