13 research outputs found

    Assessing the relationship between gut microbiota and endometriosis: a bidirectional two-sample mendelian randomization analysis

    No full text
    Abstract Background An increasing body of observational studies have indicated an association between gut microbiota and endometriosis. However, the causal relationship between them is not yet clear. In this study, we employed Mendelian randomization method to investigate the causal relationship between 211 gut microbiota taxa and endometriosis. Methods Independent genetic loci significantly associated with the relative abundance of 211 gut microbiota taxa, based on predefined thresholds, were extracted as instrumental variables. The primary analytical approach employed was the IVW method. Effect estimates were assessed primarily using the odds ratio and 95% confidence intervals. Supplementary analyses were conducted using MR-Egger regression, the weighted median method, the simple mode and the weighted mode method to complement the IVW results. In addition, we conducted tests for heterogeneity, horizontal pleiotropy, sensitivity analysis, and MR Steiger to assess the robustness of the results and the strength of the causal relationships. Results Based on the IVW method, we found that the family Prevotellaceae, genus Anaerotruncus, genus Olsenella, genus Oscillospira, and order Bacillales were identified as risk factors for endometriosis, while class Melainabacteria and genus Eubacterium ruminantium group were protective factors. Additionally, no causal relationship was observed between endometriosis and gut microbiota. Heterogeneity tests, pleiotropy tests, and leave-one-out sensitivity analyses did not detect any significant heterogeneity or pleiotropic effects. Conclusions Our MR study has provided evidence supporting a potential causal relationship between gut microbiota and endometriosis, and it suggests the absence of bidirectional causal effects. These findings could potentially offer new insights for the development of novel strategies for the prevention and treatment of endometriosis

    Decoding the tumor microenvironment and molecular mechanism: unraveling cervical cancer subpopulations and prognostic signatures through scRNA-Seq and bulk RNA-seq analyses

    Get PDF
    BackgroundCervical carcinoma (CC) represents a prevalent gynecological neoplasm, with a discernible rise in prevalence among younger cohorts observed in recent years. Nonetheless, the intrinsic cellular heterogeneity of CC remains inadequately investigated.MethodsWe utilized single-cell RNA sequencing (scRNA-seq) transcriptomic analysis to scrutinize the tumor epithelial cells derived from four specimens of cervical carcinoma (CC) patients. This method enabled the identification of pivotal subpopulations of tumor epithelial cells and elucidation of their contributions to CC progression. Subsequently, we assessed the influence of associated molecules in bulk RNA sequencing (Bulk RNA-seq) cohorts and performed cellular experiments for validation purposes.ResultsThrough our analysis, we have discerned C3 PLP2+ Tumor Epithelial Progenitor Cells as a noteworthy subpopulation in cervical carcinoma (CC), exerting a pivotal influence on the differentiation and progression of CC. We have established an independent prognostic indicator—the PLP2+ Tumor EPCs score. By stratifying patients into high and low score groups based on the median score, we have observed that the high-score group exhibits diminished survival rates compared to the low-score group. The correlations observed between these groups and immune infiltration, enriched pathways, single-nucleotide polymorphisms (SNPs), drug sensitivity, among other factors, further underscore their impact on CC prognosis. Cellular experiments have validated the significant impact of ATF6 on the proliferation and migration of CC cell lines.ConclusionThis study enriches our comprehension of the determinants shaping the progression of CC, elevates cognizance of the tumor microenvironment in CC, and offers valuable insights for prospective CC therapies. These discoveries contribute to the refinement of CC diagnostics and the formulation of optimal therapeutic approaches

    Circle-seq based method for eccDNA synthesis and its application as a canonical promoter independent vector for robust microRNA overexpression

    No full text
    Extrachromosomal circular DNA (eccDNA) has recently gained increasing attention due to its significant role in cancer and other pathophysiologic states. The majority of circular DNAs detected by Circle-seq are small-size eccDNAs with enigmatic functions. One major technical hurdle is to synthesize eccDNA for functional identification. Here, we describe CAES (Circle-seq based Artificial EccDNA Synthesis), a promising and reliable method for artificial eccDNA synthesis. Eight eccDNAs carrying different microRNA genes (eccMIR) found in gastric cancer tissues, ranging from 329 bp to 2189 bp in size, were created utilizing the CAES method. Exonuclease V and single restriction-endonuclease digestion identified the circular structure of synthetic eccDNAs. The DNA circularization efficiency afforded by CAES ranged from 15.6% to 31.1%, which was negatively correlated with the eccDNA length. In addition, we demonstrated that CAES-synthesized eccMIRs can express both miRNA-3p and − 5p molecules efficiently independent of a canonical promoter in human cell lines. Further assays proved that these eccMIRs were functional as they were able to repress the luciferase gene containing a miRNA-target sequence in the 3′UTR as well as the endogenous mRNA targets. Finally, kinetics study revealed that eccDNA exhibited a decay rate similar to the standard plasmids and linear DNA in cultured cells. Together, this study offers a rapid and convenient method for Circle-seq users to synthesize artificial eccDNAs. It also demonstrates the promising potential of eccMIR as a bacterial DNA-free vector for safe and robust miRNA overexpression in both basic research and therapeutic applications

    A Robust Framework of Chromosome Straightening with VIT-Patch GAN

    No full text
    Chromosomes exhibit non-rigid and non-articulated nature with varying degrees of curvature. Chromosome straightening is an essential step for subsequent karyotype construction, pathological diagnosis and cytogenetic map development. However, robust chromosome straightening remains challenging, due to the unavailability of training images, distorted chromosome details and shapes after straightening, as well as poor generalization capability. We propose a novel architecture, ViT-Patch GAN, consisting of a motion transformation generator and a Vision Transformer-based patch (ViT-Patch) discriminator. The generator learns the motion representation of chromosomes for straightening. With the help of the ViT-Patch discriminator, the straightened chromosomes retain more shape and banding pattern details. The proposed framework is trained on a small dataset and is able to straighten chromosome images with state-of-the-art performance for two large datasets.Comment: This work has been submitted to Springer for possible publicatio

    Table_1_Decoding the tumor microenvironment and molecular mechanism: unraveling cervical cancer subpopulations and prognostic signatures through scRNA-Seq and bulk RNA-seq analyses.docx

    No full text
    BackgroundCervical carcinoma (CC) represents a prevalent gynecological neoplasm, with a discernible rise in prevalence among younger cohorts observed in recent years. Nonetheless, the intrinsic cellular heterogeneity of CC remains inadequately investigated.MethodsWe utilized single-cell RNA sequencing (scRNA-seq) transcriptomic analysis to scrutinize the tumor epithelial cells derived from four specimens of cervical carcinoma (CC) patients. This method enabled the identification of pivotal subpopulations of tumor epithelial cells and elucidation of their contributions to CC progression. Subsequently, we assessed the influence of associated molecules in bulk RNA sequencing (Bulk RNA-seq) cohorts and performed cellular experiments for validation purposes.ResultsThrough our analysis, we have discerned C3 PLP2+ Tumor Epithelial Progenitor Cells as a noteworthy subpopulation in cervical carcinoma (CC), exerting a pivotal influence on the differentiation and progression of CC. We have established an independent prognostic indicator—the PLP2+ Tumor EPCs score. By stratifying patients into high and low score groups based on the median score, we have observed that the high-score group exhibits diminished survival rates compared to the low-score group. The correlations observed between these groups and immune infiltration, enriched pathways, single-nucleotide polymorphisms (SNPs), drug sensitivity, among other factors, further underscore their impact on CC prognosis. Cellular experiments have validated the significant impact of ATF6 on the proliferation and migration of CC cell lines.ConclusionThis study enriches our comprehension of the determinants shaping the progression of CC, elevates cognizance of the tumor microenvironment in CC, and offers valuable insights for prospective CC therapies. These discoveries contribute to the refinement of CC diagnostics and the formulation of optimal therapeutic approaches.</p

    Image_2_Decoding the tumor microenvironment and molecular mechanism: unraveling cervical cancer subpopulations and prognostic signatures through scRNA-Seq and bulk RNA-seq analyses.tif

    No full text
    BackgroundCervical carcinoma (CC) represents a prevalent gynecological neoplasm, with a discernible rise in prevalence among younger cohorts observed in recent years. Nonetheless, the intrinsic cellular heterogeneity of CC remains inadequately investigated.MethodsWe utilized single-cell RNA sequencing (scRNA-seq) transcriptomic analysis to scrutinize the tumor epithelial cells derived from four specimens of cervical carcinoma (CC) patients. This method enabled the identification of pivotal subpopulations of tumor epithelial cells and elucidation of their contributions to CC progression. Subsequently, we assessed the influence of associated molecules in bulk RNA sequencing (Bulk RNA-seq) cohorts and performed cellular experiments for validation purposes.ResultsThrough our analysis, we have discerned C3 PLP2+ Tumor Epithelial Progenitor Cells as a noteworthy subpopulation in cervical carcinoma (CC), exerting a pivotal influence on the differentiation and progression of CC. We have established an independent prognostic indicator—the PLP2+ Tumor EPCs score. By stratifying patients into high and low score groups based on the median score, we have observed that the high-score group exhibits diminished survival rates compared to the low-score group. The correlations observed between these groups and immune infiltration, enriched pathways, single-nucleotide polymorphisms (SNPs), drug sensitivity, among other factors, further underscore their impact on CC prognosis. Cellular experiments have validated the significant impact of ATF6 on the proliferation and migration of CC cell lines.ConclusionThis study enriches our comprehension of the determinants shaping the progression of CC, elevates cognizance of the tumor microenvironment in CC, and offers valuable insights for prospective CC therapies. These discoveries contribute to the refinement of CC diagnostics and the formulation of optimal therapeutic approaches.</p

    Image_1_Decoding the tumor microenvironment and molecular mechanism: unraveling cervical cancer subpopulations and prognostic signatures through scRNA-Seq and bulk RNA-seq analyses.tif

    No full text
    BackgroundCervical carcinoma (CC) represents a prevalent gynecological neoplasm, with a discernible rise in prevalence among younger cohorts observed in recent years. Nonetheless, the intrinsic cellular heterogeneity of CC remains inadequately investigated.MethodsWe utilized single-cell RNA sequencing (scRNA-seq) transcriptomic analysis to scrutinize the tumor epithelial cells derived from four specimens of cervical carcinoma (CC) patients. This method enabled the identification of pivotal subpopulations of tumor epithelial cells and elucidation of their contributions to CC progression. Subsequently, we assessed the influence of associated molecules in bulk RNA sequencing (Bulk RNA-seq) cohorts and performed cellular experiments for validation purposes.ResultsThrough our analysis, we have discerned C3 PLP2+ Tumor Epithelial Progenitor Cells as a noteworthy subpopulation in cervical carcinoma (CC), exerting a pivotal influence on the differentiation and progression of CC. We have established an independent prognostic indicator—the PLP2+ Tumor EPCs score. By stratifying patients into high and low score groups based on the median score, we have observed that the high-score group exhibits diminished survival rates compared to the low-score group. The correlations observed between these groups and immune infiltration, enriched pathways, single-nucleotide polymorphisms (SNPs), drug sensitivity, among other factors, further underscore their impact on CC prognosis. Cellular experiments have validated the significant impact of ATF6 on the proliferation and migration of CC cell lines.ConclusionThis study enriches our comprehension of the determinants shaping the progression of CC, elevates cognizance of the tumor microenvironment in CC, and offers valuable insights for prospective CC therapies. These discoveries contribute to the refinement of CC diagnostics and the formulation of optimal therapeutic approaches.</p

    Combinatorial Control of Suicide Gene Expression by Tissue-specific Promoter and microRNA Regulation for Cancer Therapy

    No full text
    Transcriptional targeting using a tissue-specific cellular promoter is proving to be a powerful means for restricting transgene expression in targeted tissues. In the context of cancer suicide gene therapy, this approach may lead to cytotoxic effects in both cancer and nontarget normal cells. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, we have developed a viral vector platform combining cellular promoter–based transcriptional targeting with miRNA regulation for a glioma suicide gene therapy in the mouse brain. The therapy employed, in a single baculoviral vector, a glial fibrillary acidic protein (GFAP) gene promoter and the repeated target sequences of three miRNAs that are enriched in astrocytes but downregulated in glioblastoma cells to control the expression of the herpes simplex virus thymidine kinase (HSVtk) gene. This resulted in significantly improved in vivo selectivity over the use of a control vector without miRNA regulation, enabling effective elimination of human glioma xenografts while producing negligible toxic effects on normal astrocytes. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of gene delivery vectors with high targeting specificity for cancer therapy
    corecore