2,225 research outputs found

    Grooming Future Hospitality Leaders: A Competencies Model

    Get PDF
    Competency models can be useful tools for identifying and grooming future leaders. Rather than base leadership assessment on personality traits or other unrelated characteristics, competency models specify the actions and behavior needed for successful leaders. While some hotel companies have begun to identify leadership competencies, the hotel industry does not have an overall competency model. Starting with competency models from other industries and the assessments from a pilot study, the authors compiled a list of 99 competencies or skills (grouped into eight overarching factors comprising 28 dimensions) that might contribute to leadership success in the hospitality industry. Those competencies were rated on a five-point scale, ranging from not at all important to extremely important, in a survey of 137 industry leaders. The competency labeled “self-management” was the top dimension (of the 28)—composed of ethics and integrity, time management, flexibility and adaptability, and self-development. Second in importance was competency in strategic positioning, comprising awareness of customer needs, commitment to quality, managing stakeholders, and concern for the community. (However, concern for the community was rated least important compared to the other three dimensions in that category). Industry knowledge, leadership, and interpersonal skill were factors that, while important, were ranked lower by the respondents

    Laser ablation loading of a radiofrequency ion trap

    Full text link
    The production of ions via laser ablation for the loading of radiofrequency (RF) ion traps is investigated using a nitrogen laser with a maximum pulse energy of 0.17 mJ and a peak intensity of about 250 MW/cm^2. A time-of-flight mass spectrometer is used to measure the ion yield and the distribution of the charge states. Singly charged ions of elements that are presently considered for the use in optical clocks or quantum logic applications could be produced from metallic samples at a rate of the order of magnitude 10^5 ions per pulse. A linear Paul trap was loaded with Th+ ions produced by laser ablation. An overall ion production and trapping efficiency of 10^-7 to 10^-6 was attained. For ions injected individually, a dependence of the capture probability on the phase of the RF field has been predicted. In the experiment this was not observed, presumably because of collective effects within the ablation plume.Comment: submitted to Appl. Phys. B., special issue on ion trappin

    Dataset for "Winter thermal comfort and health in the elderly"

    Get PDF
    The data within this dataset was collected from 43 homes, all in Bath, UK, with at least one occupant aged 65 or over. Sensors were placed in the living rooms and bedrooms of the participating homes to measure temperature at 90-minute intervals throughout the phases of the project. There were four phases in total: November 2016 – March 2017; June 2017 – September 2017; November 2017 – March 2018; June 2018 – September 2018. Corresponding questionnaires were completed on a monthly basis throughout the phases of the project, gathering data about thermal comfort and health. Within this dataset the measured internal temperatures, participant self-reported thermal comfort and health problems are contained in either Excel or CSV files.Longitudinal Temperature Monitoring - Between November 2016 until March 2017 and November 2017 until March 2018, sensors were deployed in the 43 participating homes measuring internal temperatures (in the living room and bedroom) at 90 minute intervals.iButton DS1922L sensors were used

    Mass hierarchy, mass gap and corrections to Newton's law on thick branes with Poincare symmetry

    Full text link
    We consider a scalar thick brane configuration arising in a 5D theory of gravity coupled to a self-interacting scalar field in a Riemannian manifold. We start from known classical solutions of the corresponding field equations and elaborate on the physics of the transverse traceless modes of linear fluctuations of the classical background, which obey a Schroedinger-like equation. We further consider two special cases in which this equation can be solved analytically for any massive mode with m^2>0, in contrast with numerical approaches, allowing us to study in closed form the massive spectrum of Kaluza-Klein (KK) excitations and to compute the corrections to Newton's law in the thin brane limit. In the first case we consider a solution with a mass gap in the spectrum of KK fluctuations with two bound states - the massless 4D graviton free of tachyonic instabilities and a massive KK excitation - as well as a tower of continuous massive KK modes which obey a Legendre equation. The mass gap is defined by the inverse of the brane thickness, allowing us to get rid of the potentially dangerous multiplicity of arbitrarily light KK modes. It is shown that due to this lucky circumstance, the solution of the mass hierarchy problem is much simpler and transparent than in the (thin) Randall-Sundrum (RS) two-brane configuration. In the second case we present a smooth version of the RS model with a single massless bound state, which accounts for the 4D graviton, and a sector of continuous fluctuation modes with no mass gap, which obey a confluent Heun equation in the Ince limit. (The latter seems to have physical applications for the first time within braneworld models). For this solution the mass hierarchy problem is solved as in the Lykken-Randall model and the model is completely free of naked singularities.Comment: 25 pages in latex, no figures, content changed, corrections to Newton's law included for smooth version of RS model and an author adde

    Probabilistic travel time progression and its application to automatic vehicle identification data

    Get PDF
    Travel time has been identified as an important variable to evaluate the performance of a transportation system. Based on the travel time prediction, road users can make their optimal decision in choosing route and departure time. In order to utilise adequately the advanced data collection methods that provide real-time different types of information, this paper is aimed at a novel approach to the estimation of long roadway travel times, using Automatic Vehicle Identification (AVI) technology. Since the long roads contain a large number of scanners, the AVI sample size tends to reduce and, as such, computing the distribution for the total road travel time becomes difficult. In this work, we introduce a probabilistic framework that extends the deterministic travel time progression method to dependent random variables and enables the off-line estimation of road travel time distributions. In the proposed method, the accuracy of the estimation does not depend on the size of the sample over the entire corridor, but only on the amount of historical data that is available for each link. In practice, the system is also robust to small link samples and can be used to detect outliers within the AVI data

    Ogle-2018-blg-0677lb: A super earth near the galactic bulge

    Get PDF
    We report the analysis of the microlensing event OGLE-2018-BLG-0677. A small feature in the light curve of the event leads to the discovery that the lens is a star-planet system. Although there are two degenerate solutions that could not be distinguished for this event, both lead to a similar planet-host mass ratio. We perform a Bayesian analysis based on a Galactic model to obtain the properties of the system and find that the planet corresponds to a super-Earth/sub-Neptune with a mass Mplanet=3.962.66+5.88MM_{\mathrm{planet}} = {3.96}^{+5.88}_{-2.66}\mathrm{M_\oplus}. The host star has a mass Mhost=0.120.08+0.14M M_{\mathrm{host}} = {0.12}^{+0.14}_{-0.08}\mathrm{M_\odot}. The projected separation for the inner and outer solutions are 0.630.17+0.20{0.63}^{+0.20}_{-0.17}~AU and 0.720.19+0.23{0.72}^{+0.23}_{-0.19}~AU respectively. At Δχ2=χ2(1L1S)χ2(2L1S)=46\Delta\chi^2=\chi^2({\rm 1L1S})-\chi^2({\rm 2L1S})=46, this is by far the lowest Δχ2\Delta\chi^2 for any securely-detected microlensing planet to date, a feature that is closely connected to the fact that it is detected primarily via a "dip" rather than a "bump".Comment: 15 page, 12 figures, Published in A

    CCAT-prime: Science with an Ultra-widefield Submillimeter Observatory at Cerro Chajnantor

    Full text link
    We present the detailed science case, and brief descriptions of the telescope design, site, and first light instrument plans for a new ultra-wide field submillimeter observatory, CCAT-prime, that we are constructing at a 5600 m elevation site on Cerro Chajnantor in northern Chile. Our science goals are to study star and galaxy formation from the epoch of reionization to the present, investigate the growth of structure in the Universe, improve the precision of B-mode CMB measurements, and investigate the interstellar medium and star formation in the Galaxy and nearby galaxies through spectroscopic, polarimetric, and broadband surveys at wavelengths from 200 um to 2 mm. These goals are realized with our two first light instruments, a large field-of-view (FoV) bolometer-based imager called Prime-Cam (that has both camera and an imaging spectrometer modules), and a multi-beam submillimeter heterodyne spectrometer, CHAI. CCAT-prime will have very high surface accuracy and very low system emissivity, so that combined with its wide FoV at the unsurpassed CCAT site our telescope/instrumentation combination is ideally suited to pursue this science. The CCAT-prime telescope is being designed and built by Vertex Antennentechnik GmbH. We expect to achieve first light in the spring of 2021.Comment: Presented at SPIE Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, June 14th, 201
    corecore