Abstract

We report the analysis of the microlensing event OGLE-2018-BLG-0677. A small feature in the light curve of the event leads to the discovery that the lens is a star-planet system. Although there are two degenerate solutions that could not be distinguished for this event, both lead to a similar planet-host mass ratio. We perform a Bayesian analysis based on a Galactic model to obtain the properties of the system and find that the planet corresponds to a super-Earth/sub-Neptune with a mass Mplanet=3.962.66+5.88MM_{\mathrm{planet}} = {3.96}^{+5.88}_{-2.66}\mathrm{M_\oplus}. The host star has a mass Mhost=0.120.08+0.14M M_{\mathrm{host}} = {0.12}^{+0.14}_{-0.08}\mathrm{M_\odot}. The projected separation for the inner and outer solutions are 0.630.17+0.20{0.63}^{+0.20}_{-0.17}~AU and 0.720.19+0.23{0.72}^{+0.23}_{-0.19}~AU respectively. At Δχ2=χ2(1L1S)χ2(2L1S)=46\Delta\chi^2=\chi^2({\rm 1L1S})-\chi^2({\rm 2L1S})=46, this is by far the lowest Δχ2\Delta\chi^2 for any securely-detected microlensing planet to date, a feature that is closely connected to the fact that it is detected primarily via a "dip" rather than a "bump".Comment: 15 page, 12 figures, Published in A

    Similar works