124 research outputs found

    A New Look at Optimum Design for Convecting-Radiating Annular Fins of Trapezoidal Profile

    Get PDF
    This paper deals with a controversial problem in answering the question “Does the optimum fin design always exist? If not, what are the optimization ranges and limitations?” These authors employ a general example of convecting-radiating trapezoidal annular fin with heat transfer at the tip and wall resistance at the interface. The present results indicate that the answer to the above first question is negative. The ranges of fin optimum design under different thermal and physical conditions are proposed. The effects of Biot number, radiation number, the heat loss at the tip, fin profile and overall wall resistance on fin optimization range are further investigated and discussed. http://dx.doi.org/10.2174/1874396X0110501009

    Design Charts for Circular Fins of Arbitrary Profile Subject to Radiation and Convection with Wall Resistances

    Get PDF
    In this work, the optimization for a radiative-convective annular fin of arbitrary profile with base wall thermal resistances is considered. A fourth order Runge-Kutta method is used to solve the associated non-linear governing equa-tions. Further differentiations yield the optimum heat transfer and the optimum fin dimensions. To facilitate the thermal design, design charts for optimum dimensions are proposed. Furthermore, the fin effectiveness for the optimal annular ra-diative-convective fins is presented to check the practicality of the design. http://dx.doi.org/10.2174/1874396X0120601001

    Thermomechanical Design Criteria for Zr02-Y203 Coated Surfaces

    Get PDF
    Thermocycling of ceramic-coated turbomachine components produces high thermomechanical stresses that are mitigated by plasticity and creep but aggravated by oxidation, with residual stresses exacerbated by all three. These residual stresses, coupled with the thermocyclic loading, lead to high compressive stresses that cause the coating to spall. In the paper a ceramic-coated gas path seal is modeled with consideration given to creep, plasticity, and oxidation. The resulting stresses and possible failure modes are discussed

    Thermomechanical Design Criteria for Ceramic-Coated Surfaces

    Get PDF
    Some early history of ceramic applications is presented. Finite element modeling of components to determine service and fabrication loads found inelastic behavior and residual stresses to be significant to component life. Inelastic behavior mitigates peak strains but enhances residual strains. Results of furnace, Mach 0.3 burner, and engine tests are discussed and categorized into design criteria (loading, geometry, fabrication, materials, analysis, and testing). These design rules and finite element analyses are brought to bear on two test cases: turboshaft engine seals, and rocket thrust chambers

    Search for gravitational-wave transients associated with magnetar bursts in advanced LIGO and advanced Virgo data from the third observing run

    Get PDF
    Gravitational waves are expected to be produced from neutron star oscillations associated with magnetar giant f lares and short bursts. We present the results of a search for short-duration (milliseconds to seconds) and longduration (∼100 s) transient gravitational waves from 13 magnetar short bursts observed during Advanced LIGO, Advanced Virgo, and KAGRA’s third observation run. These 13 bursts come from two magnetars, SGR1935 +2154 and SwiftJ1818.0−1607. We also include three other electromagnetic burst events detected by FermiGBM which were identified as likely coming from one or more magnetars, but they have no association with a known magnetar. No magnetar giant flares were detected during the analysis period. We find no evidence of gravitational waves associated with any of these 16 bursts. We place upper limits on the rms of the integrated incident gravitational-wave strain that reach 3.6 × 10−²³ Hz at 100 Hz for the short-duration search and 1.1 ×10−²² Hz at 450 Hz for the long-duration search. For a ringdown signal at 1590 Hz targeted by the short-duration search the limit is set to 2.3 × 10−²² Hz. Using the estimated distance to each magnetar, we derive upper limits upper limits on the emitted gravitational-wave energy of 1.5 × 1044 erg (1.0 × 1044 erg) for SGR 1935+2154 and 9.4 × 10^43 erg (1.3 × 1044 erg) for Swift J1818.0−1607, for the short-duration (long-duration) search. Assuming isotropic emission of electromagnetic radiation of the burst fluences, we constrain the ratio of gravitational-wave energy to electromagnetic energy for bursts from SGR 1935+2154 with the available fluence information. The lowest of these ratios is 4.5 × 103

    A joint Fermi-GBM and Swift-BAT analysis of gravitational-wave candidates from the third gravitational-wave observing run

    Get PDF
    We present Fermi Gamma-ray Burst Monitor (Fermi-GBM) and Swift Burst Alert Telescope (Swift-BAT) searches for gamma-ray/X-ray counterparts to gravitational-wave (GW) candidate events identified during the third observing run of the Advanced LIGO and Advanced Virgo detectors. Using Fermi-GBM onboard triggers and subthreshold gamma-ray burst (GRB) candidates found in the Fermi-GBM ground analyses, the Targeted Search and the Untargeted Search, we investigate whether there are any coincident GRBs associated with the GWs. We also search the Swift-BAT rate data around the GW times to determine whether a GRB counterpart is present. No counterparts are found. Using both the Fermi-GBM Targeted Search and the Swift-BAT search, we calculate flux upper limits and present joint upper limits on the gamma-ray luminosity of each GW. Given these limits, we constrain theoretical models for the emission of gamma rays from binary black hole mergers

    Constraints on the cosmic expansion history from GWTC–3

    Get PDF
    We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding H0=688+12km  s1Mpc1{H}_{0}={68}_{-8}^{+12}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of H0=686+8km  s1Mpc1{H}_{0}={68}_{-6}^{+8}\,\mathrm{km}\ \,\ {{\rm{s}}}^{-1}\,{\mathrm{Mpc}}^{-1} with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814

    Discussion on TheHeat Balance Integral in Steady State Conduction

    No full text

    Optimization of Design Parameters for Radiating Longitudinal Fins of Various Geometries

    No full text
    This work presents a systematic study on optimum dimensions and the associated heat transfer characteristics for radiating longitudinal fins and clarifies the discrepancies on optimum results of previous authors using different approaches. To facilitate thermal designers, simple working formulas are proposed for the optimum dimensions, heat dissipation nd efficiency of longitudinal fins with an arbitrary profile

    ASM Handbook of Engineering Mathematics, Ch. 21 Heat Transfer

    No full text
    Comprehensive and complete, this handbook is a practical, one-volume reference to working formulas and equations for practicing mechanical engineers. Thousands of key equations, constants and diagrams are brought together to simplify engineering and technical calculations
    corecore